Автор работы: Пользователь скрыл имя, 29 Апреля 2013 в 11:16, курсовая работа
Целью исследования являлось:
Изучить содержание 3,4–бенз(а)пирена в почвах и растениях зоны влияния Новочеркасской ГРЭС
Задачи:
1. Провести оценку тенденций накопления 3,4 – бенз(а)пирена в почвах и растениях, зоны влияния Новочеркасской ГРЭС;
2. Определить дополнительные источники эмиссии поллютанта;
Список сокращений
Введение
1. Обзор литературы
1.1 Влияние тепловых электростанций на экологическую обстановку прилегающих территорий
1.2 Структура, химические и физические свойства ПАУ
1.3 Источники поступления ПАУ в окружающую среду
1.4 Естественные источники ПАУ
1.5 Антропогенные источники ПАУ
1.6 Система ПАУ–почва
1.7 Перемещение и разрушение ПАУ в почве
1.8 ПАУ в растениях
1.9 Влияние 3,4–бенз(а)пирена на организм человека
2. Объекты и методика исследования
2.1 Объекты исследования
2.2 Методика исследования
3. Результаты исследования
Выводы
Список использованных источников
Таблица6
Содержание 3,4-бенз(а)пирена (нг/г) в вегетативной части естественной растительности мониторинговых площадок (среднее за 2009г.)
№ площадок |
Удаленность и направление от источника загрязнения |
Вегетативная часть растений | |
Содержание 3,4 БП, нг/г |
Превышение фоновых | ||
1 |
1,0 северо-восточное |
196 |
39,2 |
2 |
3,0 юго-западное |
79 |
15,8 |
3 |
2,7 юго-западное |
189 |
37,8 |
4 |
1,6 северо-западное |
167 |
33,4 |
5 |
1,2 северо-западное |
71 |
14,2 |
6 |
2,0 северное |
34 |
6,8 |
7 |
1,5 северное |
76 |
15,5 |
8 |
1,0 северо-западное |
133 |
26,6 |
9 |
15 северо-западное |
36 |
7,2 |
10 |
20 северо-западное |
41 |
8,2 |
Установлено превышение фоновых концентраций поллютанта как минимум в 4 раза на всех участках исследуемых территорий. Обобщение полученных результатов проводится с использованием группировки мониторинговых площадок по интенсивности техногенной нагрузки и пространственному распределению.
«Генеральное направление (№ 4, 8, 9, 10)»
Территории, располагающиеся в направлении розы ветров (преимущественными являются ветры восточных направлений), испытывают максимальную техногенную нагрузку со стороны выбросов НчГРЭС. Превышение фоновых концентраций в надземной части растительности мониторинговых площадок, расположенных в северо-западном направлении, составляет от 7,2 до 33,4 раз; а в почвах превышение ПДК составляет от 2,4 до 9,7 раз. Максимальное содержание 3,4-бенз(а)пиреиа как в почве, так и в растительности (рис. 3), наблюдается на территории площадки № 4, удалённой от источника эмиссии на расстояние 1,6 км.
Рис. 3. Содержание 3,4-бенз(а)пирена в почвах и растительности по линии «генерального направления»
На гистограмме показано, что содержание поллютанта в изученных объектах снижается по мере удаления от источника эмиссии. Особое положение занимает мониторинговая площадка № 10, удаленная на расстояние 20 км от НчГРЭС, но испытывающая влияние дополнительных источников загрязнения. Территория площадки ограждёна двумя автомагистралями - Ростов-Москва с северо-западной стороны и Ростов-Новочеркасск с юго-восточной. В этой точке наблюдается возрастание содержания канцерогена во всех изучаемых объектах. Проведённые мониторинговые наблюдения показали, что даже значительно удалённые НчГРЭС территории могут содержать 3,4-бенз(а)пирен в концентрациях превышающих допустимые, причём преобладающим агентом загрязнения может являться не основной, а дополнительные источники эмиссии. Как наглядно демонстрирует гистограмма (рис.3), содержание изучаемого канцерогена в надземной части растительности не превышает его концентрацию в почве. Травянистая растительность, покрывающая почвенный покров изучаемых территорий, и обладающая развитой сорбционной поверхностью, накапливает загрязнённые вещества из атмосферных аэрозолей менее активнее почвы и, следовательно, содержит меньшее количество 3,4-бенз(а)пирена.
«Площадки, расположенные в радиусе 1-3 км (№ 1, 2, 3, 5, 6, 7)»
Площадки лежат на концентрической кривой, очерчивающей границы санитарно-защитной зоны.
«Площадки, подверженные влиянию дополнительных источников эмиссии (№ 1)»
Активное накопление 3,4-бенз(а)пирена в надземной части растительности наблюдается на территории площадки № 1. Концентрация канцерогена в надземных органах составляет 196 нг/г, превышает ПДК в 39,2 раза, а содержание поллютанта в почве равно 275 нг/г, что превышает ПДК в 14 раз. Такой характер накопления поллютанта вызван атмосферным загрязнением, так как точка максимально приближена к НчГРЭС (1км).
«Площадки близко расположенные
к линии «генерального
Среди площадок радиального направления, наибольшая концентрация 3,4-бенз(а)пирена обнаружена в растительности и почвах мониторинговой площадки № 3, расположенной па удалении 2,7 км на юго-запад от источника эмиссии (табл.5). Территория мониторинговой площадки № 3 расположена всего на 1100м южнее максимально загрязнённой площадки генерального направления №. 4, а уровень загрязнения почвы и надземной части растительности возрастает в 1 и 1,2 раза соответственно. Значительное повышение концентрации 3,4-беиз(а)пиреиа на территориях, расположенных севернее и южнее от «генерального направления», связано с физическими свойствами почв, а именно с гранулометрическим составом.
«Площадки среднего уровня влияния НчГРЭС (№ 2, 3, б, 7)»
Мониторинговые площадки № 2 и №. 3, расположенные на расстоянии 3,0 км и 2,7 км на юго-запад от НчГРЭС, имеют общие черты в характере расположения, а, следовательно, и в уровне загрязнения растительности и почв этих территорий 3,4-бенз(а)пиреном, но при этом имеются и различия.
Возможно, причина того, что содержание 3,4-бенз(а)пирена в почве и растительности площадки № 3 выше, чем площадки № 2, заключается в том, что площадка № 3 находится в условиях лучшего увлажнения и характер сё растительного покрова несёт выраженные черты лугового сообщества. Растительность площадки более разнообразна, а надземные органы развиты лучше, и как следствие имеют большую адсорбционную площадь, что способствует накоплению изучаемого поллютанта.
Необходимо заметить, что почва мониторинговой площадки № 2, имеет наиболее лёгкий гранулометрический состав и самую низкую ёмкость катионного обмена (табл. 4.) и, следовательно, сорбционные способности, что и является причиной низкого содержания 3,4-бенз(а)пирена.
Возможно, сочетание перечисленных факторов приводит к тому, что содержание 3,4-бенз(а)иирена в слое почвы площадки № 2 по усреднённым данным двух лет наблюдений превышает ПДК не значительно и составляет 1.
Приведённые результаты исследований показывают, что даже при сходном расположении участков но отношению к источнику эмиссии, уровень загрязнения объектов экосистемы может заметно отличаться. Причинами этого служат различия в свойствах почв, условиях увлажнения, характере растительного сообщества, сорбционных свойствах надземных частей растений и т.д.
Картина распределения 3,4-бенз(а)пирена на территории площадок № б и № 7 имеет аналогичные черты, по сравнению с площадками № 2 и № 3. На указанных площадках большая часть поллютанта накапливается на площадке №7, что составляет в почве 90 нг/г, превышение ПДК здесь 1,4 раза. Канцероген накапливается и в надземной части растений интенсивнее нежели в точке №6. Причина приоритетного накопления 3,4-беиз(а)пирена в растительности и повышенная его концентрация в почве, по сравнению с площадкой № 6 - в расположении мониторинговой площадки № 7. Она соседствует с площадкой № 8, и располагается ближе к подфакельному пространству НчГРЭС.
Содержание изучаемого поллютанта на всех представленных мониторинговых площадках в надземной части растительности несколько меньше, чем в почве. Это наглядно демонстрирует, что почва более активно поглощает 3,4-бенз(а)пирен из загрязненной атмосферы нежели растения. Являясь жирорастворимым веществом, 3,4-бенз(а)пирен может проникать в ткани растения через липидные компоненты клеточной стенки, т.е. путём поступления поллютанта через поверхность надземных органов растений - стеблей и листьев. На изучаемых территориях именно этот путь и является приоритетным (табл.5).
Анализ данных мониторинговых исследований 2009 года позволяет предположить, что уменьшения содержания Пау в почвах, по сравнению с показателями 2008 года, не наблюдается, наоборот идет накопление поллютанта в верхнем слое почв.
Выводы
- Обнаружен 3,4-бенз(а)пирен
во всех исследуемых объектах
экосистемы в концентрациях
- Основным источником являются атмосферные аэрозоли, загрязнённые дымовыми выбросами НчГРЭС, поступление 3,4-бенз(а)пирена на территории зоны максимального загрязнения составляет в среднем 9 нг/м2 в сутки.
- Интенсивность накопления
3,4-бенз(а)пирена зависит от
- Надземная часть растительности мониторинговых площадок содержит 3,4-бенз(а)пирен в концентрациях, не превышающих его содержание слое почвы 0-20 см, что доказывает приоритет атмосферного загрязнения над корневым питанием.
- Наиболее активно загрязнитель накапливается в верхнем 0-5 см слое почвы
- На накопление загрязнителя
оказывает влияние физико-
Список использованных источников
1. Агрохимические методы исследования почв. - М.: Наука, 1975. – С. 651–656
2. Алексеева Т.А., Теплицкая Т.А. Спектрофлуориметрические методы анализа ароматических углеводородов в природных средах. - Л.: Гидрометеоиздат, 1981. – С. 213–215
3. Беджер Г.М. Химические
основы канцерогенной
4. Белоусова Н.В. Экология Новочеркасска. Проблемы, пути решения.- Ростов н/Д.: Сев.–Кав. Научный центр высш. Школы, 2001. – С. 387–395
5. Беляков Г. И. «Охрана труда». - М.: ВО «Агропромиздат», 1990. - С. 154–167
6. Безуглова О.С. Гумусное состояние почв юга России. - Ростов н/Д: СКНЦВШ, 2001. - 228 с
7. Большой энциклопедический словарь. Химия. – М.: Большая Российская энциклопедия, 1998. - С. 789–790
8. Вальков В.Ф. Экология почв Ростовской области. - Ростов н/Д: СКНЦВШ, 1994. - С. 82-86
9. Васильева Т.В., Железняк А.О., Халикова Н.У. Миграция канцерогенных гидроароматических углеводородов в биосфере города Бишкека // Экологический вестник. - №4. - 2003. – С. 45-47
10. Геннадиев А.Н., Козин
И.С., Шурубор и др. Динамика загрязнения
почв полициклическими
11. Горобцова О.Н., Назаренко
О.Г., Минкина Т.М., Борисенко Н.И.,
Ярощук А.В. Роль почвенного
покрова в аккумуляции и
12. Государственный доклад
«О состоянии окружающей
13. Давыдова С.Л. Тагасов В.Ш. Тяжёлые металлы как супертоксиканты. - М.: Российского унив. др. народов, 2002. 139 с
14. Девдариани Т. В.
Биотрансформация некоторых
15. Дикун П.П. Определение полициклических ароматических углеводородов // Проблемы аналитической химии. - М.: Наука, 1979. - № 6. - С. 100-116
16. Израэль Ю.А. Экология
и контроль состояние
17. Ильницкий А.П. Канцерогенные углеводороды в почве, воде и растительности // Канцерогены в окружающей среде. - М.: Гидрометеоиздат, 1975. - С. 53-71
18. Кулакова И.И. и др. О возможном механизме синтеза полициклических ароматических углеводородов в процессе эндогенного минералообразования // Докл. АН СССР, 1982. Т. 266, - №4. - С. 1001 – 1003
19. Медико-биологические
требования и санитарные нормы
качества продовольственного
20. Металлогения и геохимия угленосных и сланцевых толщ СССР. Геохимия элементов. - М, 1987. 17 с
21. Нурмухаметов Р.Н.
Поглощение и люминесценция
22. Перечень предельно-допустимых
концентраций (ПДК) и ориентировочно-
23. Петрухин В.А., Андриевский
В.И., Савенко В.С.О значении
24. Пиковский Ю.И. Природные
и техногенные потоки
25.Ровинский Ф.Я., Теплицкая
Т.А. , Алексеева Т.А. Фоновый
26. Скуратов Н.С. Влияние
атмосферного загрязнения
27. Теплицкая Т.А. Автоматический
анализатор ПАУ на основе
28. Угрехелидзе Д.Ш. Метаболизм
экзогенных алканов и
29.Унифицированные методы
Информация о работе Влияние Новочеркасской ГРЭС на содержание 3,4-бенз(а)пирена в почвах