Действие на организм человека высоких и малых доз радиации

Автор работы: Пользователь скрыл имя, 10 Марта 2015 в 23:27, реферат

Краткое описание

Радиация играет огромную роль в развитии цивилизации на данном историческом этапе. Благодаря явлению радиоактивности был совершен существенный прорыв в области медицины и в различных отраслях промышленности, включая энергетику. Но одновременно с этим стали всё отчётливее проявляться негативные стороны свойств радиоактивных элементов: выяснилось, что воздействие радиационного излучения на организм может иметь трагические последствия. Подобный факт не мог пройти мимо внимания общественности.

Содержание

Введение
1. Радиация. Дозы радиации. Единицы измерения
2. Воздействие радиации на организм человека
3. Большие и малые дозы. Виды эффектов радиации
4. Защита от воздействия ионизирующих излучений
5.Общие меры безопасности и радиационный контроль
6. Источники радиационного излучения
Заключение
Список литературы

Вложенные файлы: 1 файл

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ.docx

— 99.60 Кб (Скачать файл)

При воздействии на человека излучения мощностью поглощенной дозы свыше 100 Гр происходит «смерть под лучом» - немедленная гибель.

Кратковременное мощное, но локализованное воздействие ионизирующего излучения вызывает развитие лучевых ожогов, возникающих в результате массовой гибели клеток организма подвергшихся воздействию.

Хроническое облучение слабее действует на живой организм по сравнению с однократным облучением в той же дозе, что связано с постоянно идущими процессами восстановления радиационных повреждений. Считается, что примерно 90% радиационных повреждений восстанавливается.

Хроническая лучевая болезнь — развивается в результате длительного непрерывного или фракционированного облучения организма в дозах 0,1—0,5 Гр/сут при суммарной дозе, превышающей 0,7—1 Гр

2) Стохастические (вероятностные) эффекты, такие как злокачественные  новообразования, генетические нарушения, могут возникать при любых  дозах облучения. С увеличением  дозы повышается не тяжесть  этих эффектов, а вероятность (риск) их появления

Организм, при поступлении продуктов ядерного деления, подвергается длительному, убывающему по интенсивности, облучению.

Наиболее интенсивно облучаются органы, через которые поступили радионуклиды в организм (органы дыхания и пищеварения), а также щитовидная железа и печень. Дозы, поглощенные в них, на 1-3 порядка выше, чем в других органах и тканях. Основным начальным звеном многих пищевых цепей является загрязнение поверхности почвы и растений. Продукты питания животного происхождения - один из основных источников попадания радионуклидов к человеку.

Радионуклиды накапливаются в органах неравномерно. В процессе обмена веществ в организме человека они замещают атомы стабильных элементов в различных структурах клеток, биологически активных соединениях, что приводит к высоким локальным дозам. При распаде радионуклида образуются изотопы химических элементов, принадлежащие соседним группам периодической системы, что может привести к разрыву химических связей и перестройке молекул. Эффект радиационного воздействия может проявиться совсем не в том месте, которое подвергалось облучению. Превышение дозы радиации может привести к угнетению иммунной системы организма и сделать его восприимчивым к различным заболеваниям. При облучении повышается также вероятность появления злокачественных опухолей.

По способности концентрировать всосавшиеся продукты деления основные органы можно расположить в следующий ряд:

щитовидная железа > печень > скелет > мышцы.

Так, в щитовидной железе накапливается до 30% всосавшихся продуктов деления, преимущественно радиоизотопов йода.

По концентрации радионуклидов на втором месте после щитовидной железы находится печень. Доза облучения, полученная этим органом, преимущественно обусловлена радионуклидами 99Мо, 132Te,131I, 132I, 140Bа, 140Lа.

Среди техногенных радионуклидов особого внимания заслуживают изотопы йода. Они обладают высокой химической активностью, способны интенсивно включаться в биологический круговорот и мигрировать по биологическим цепям, одним из звеньев которых может быть человек.

Исследования, охватившие примерно 100000 человек, переживших атомные бомбардировки Хиросимы и Нагасаки, показывают, что рак - наиболее серьезное последствие облучения человека при малых дозах. Первыми среди раковых заболеванийпоражающих население, стоят лейкозы.

Распространенными видами рака под действием радиации являются рак молочной железы и рак щитовидной железы. Обе эти разновидности рака излечимы и оценки ООН показывают, что в случае рака щитовидной железы летальный исход наблюдается у одного человека из тысячи, облученных при индивидуальной поглощенной дозе 1 Гр.

Данные по генетическим последствиям облучения весьма неопределенны. Ионизирующее излучение может порождать жизнеспособные клетки, которые будут передавать то или иное изменение из поколения в поколение. Однако анализ этот затруднен, так как примерно 10% всех новорожденных имеют те или иные генетические дефекты и трудно выделить случаи, обусловленные действием радиации. Экспертные оценки показывают, что хроническое облучение при дозе 1 Грай, полученной в течение 30 лет, приводит к появлению около 2000 случаев генетических заболеваний на каждый миллион новорожденных среди детей тех, кто подвергался облучению.

В последние десятилетия процессы взаимодействия ионизирующих излучений с тканями человеческого организма были детально исследованы. В результате выработаны нормы радиационной безопасности, отражающие действительную роль ионизирующих излучений с точки зрения их вреда для здоровья человека. При этом необходимо помнить, что норматив всегда является результатом компромисса между риском и выгодой.

 

 

4. Защита от  воздействия ионизирующих излучений

 

Защита от ионизирующих излучений состоит в как можно большем снижении их интенсивности.

Меры по обеспечению защиты от радиации включают в себя, в частности, выполнение санитарно-гигиенических требований к помещениям, где находятся источники излучения, и соблюдение личной гигиены. 
Толщина экрана, необходимая для полного поглощения потока альфа-излучения, превосходит длину пробега альфа-частиц в материале, из которого он изготовлен. Вместо применения защитного экрана практикуется удаление облучаемого объекта от источника альфа-излучения. Защита от бета-излучения также связана с ослаблением его воздействия при помощи экрана. 
   С помощью рис.5.3 можно проиллюстрировать характер изменения интенсивности гамма-излучения при его распространении в веществе.

 

 

 

 

 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Из графика следует, что кривая интенсивности у-излучения не пересекается с осью абсцисс. Это означает, что гамма-излучение не 
может быть полностью поглощено, какой бы ни была толщина слоя вещества или экрана. Можно лишь в определенной степени ослабить его интенсивность. Так, например, при толщине экрана d0.5 интенсивность излучения ослабляется в 2 раза, а при толщине d0.1 - в 10 раз. 
Экраны, защищающие от воздействия у-излучения, изготавливают из свинца, вольфрама, нержавеющей стали, медных сплавов, чугуна, бетона и других материалов. Лучшими для этой цели считают вещества, имеющие большую атомную массу и значительную плотность.  Защитные экраны от гамма-лучей и нейтронов представляют собой сочетания материалов, имеющих большую плотность, с водой (например, свинец-вода, железо-вода или железо-графит). 
Для смотровых иллюминаторов применяют прозрачные материалы, например свинцовые стекла или системы на основе жидкого наполнителя в стекле. Наполнителями в них могут служить бромистый и хлористый цинк. 
Приемлемый уровень безопасности при работе с источником гамма-излучения достижим при определенных сочетаниях продолжительности 
работы, расстояния до источника и его активности, которая зависит от массы вещества и убывает со временем.

 

5. Общие меры  безопасности и радиационный  контроль

 

В соответствии с правилами работы с радиоактивными веществами и другими источниками ионизирующих излучений необходимо проводить радиационный контроль - радио- и дозиметрический. Методами радиометрического контроля можно определить загрязненность воздуха, одежды, поверхностей предметов и помещения радиоактивными веществами, тогда как дозиметрический контроль связан с измерением индивидуальных доз излучения, воздействующих на тех, кто работает с радиоактивными веществами, и интенсивность излучения на объектах, где эти вещества используются. Радиометрический и дозиметрический контроль осуществляют ионизационным, сцинтилляционным, фотографическим и химическим методами.

 В ионизационном методе используется свойство газов проводить электрический ток под действием радиоактивного излучения. 
Сила тока, регистрируемая измерительным прибором, прямо пропорциональна интенсивности излучения.

Сцинтилляционный метод основан на свойстве некоторых веществ люминесцировать под действием радиоактивного излучения. Фотоэмульсионный слой темнеет под действием радиоактивного излучения, причем степень потемнения зависит от дозы излучения. Это свойство используют в фотографическом методе контроля. Химический метод связан с изменением цвета некоторых растворов под действием излучения. 
В зависимости от состояния радиоактивного вещества используют различные приборы и оборудование: рентгенометры, градуированные в рентгенах в час или миллирентгенах в час, и дозиметры, градуированные в рентгенах или радах.

Осуществляют три вида контроля: государственный, ведомственный и особый.

Государственный контроль, выборочно проводимый радиологическим отделом территориального санэпиднадзора, направлен на выяснение общей радиационной обстановки путем анализа всех видов сырья и материалов, использующихся в данном регионе, от всех поставщиков.

При ведомственном контроле осуществляют систематическое наблюдение за содержанием радионуклидов в исходном минеральном сырье, строительных материалах, изделиях и конструкциях (при необходимости проводят контроль мощности экспозиционной дозы и объемной активности радона и дочерних продуктов его распада).

При особом контроле ведомственные организации осуществляют разовые проверки совместно со специальными отделами территориального санэпиднадзора.

Для измерения параметров радиоактивного излучения применяют различные приборы, в том числе индикаторный прибор СРП-68 или СРП-88Н (сцинтилляционный счетчик) и дозиметр типа ДРТ-ОГТ (газоразрядный счетчик).

Дозиметром ДРТ-ОГТ измеряют мощность экспозиционной дозы на рабочих местах, в смежных помещениях и на территории организаций, использующих радиоактивные вещества и другие источники ионизирующих излучений в санитарно-защитной зоне. Он предназначен для работы в диапазоне температур 10...40°С при влажности воздуха до 90% (соответствует температуре 30°С) и атмосферном давлении 84...106,7кПа, в постоянных магнитных полях и интервале энергий фонов 0,05...3,0МэВ. Прибор измеряет мощность экспозиционной дозы в диапазонах 0,010...9,999мР/ч и 0,010...9,999Р/ч.

Типы и назначение дозиметрических приборов приведены ниже:

 

 

 

6. Источники радиационного излучения

 

Теперь, имея представление о воздействии радиационного облучения на живые ткани, необходимо выяснить, в каких ситуациях мы наиболее подвержены этому воздействию.

Существует два способа облучения: если радиоактивные вещества находятся вне организма и облучают его снаружи, то речь идет о внешнем облучении. Другой способ облучения – при попадании радионуклидов внутрь организма с воздухом, пищей и водой – называют внутренним.

Источники радиоактивного излучения весьма разнообразны, но их можно объединить в две большие группы: естественные и искусственные (созданные человеком). Причем основная доля облучения (более 75% годовой эффективной эквивалентной дозы) приходится на естественный фон.

 

Естественные источники радиации

 

Естественные радионуклиды делятся на четыре группы: долгоживущие (уран-238, уран-235, торий-232); короткоживущие (радий, радон); долгоживущие одиночные, не образующие семейств (калий-40); радионуклиды, возникающие в результате взаимодействия космических частиц с атомными ядрами вещества Земли (углерод-14).

Разные виды излучения попадают на поверхность Земли либо из космоса, либо поступают от радиоактивных веществ, находящихся в земной коре, причем земные источники ответственны в среднем за 5/6 годовой эффективной эквивалентной доз, получаемой населением, в основном вследствие внутреннего облучения.

Уровни радиационного излучения неодинаковы для различных областей. Так, Северный и Южный полюсы более, чем экваториальная зона, подвержены воздействию космических лучей из-за наличия у Земли магнитного поля, отклоняющего заряженные радиоактивные частицы. Кроме того, чем больше удаление от земной поверхности, тем интенсивнее космическое излучение.

Уровни земной радиации также распределяются неравномерно по поверхности Земли и зависят от состава и концентрации радиоактивных веществ в земной коре. Так называемые аномальные радиационные поля природного происхождения образуются в случае обогащения некоторых типов горных пород ураном, торием, на месторождениях радиоактивных элементов в различных породах, при современном привносе урана, радия, радона в поверхностные и подземные воды, геологическую среду.

Среди естественных радионуклидов наибольший вклад (более 50%) в суммарную дозу облучения несет радон и его дочерние продукты распада (в т.ч. радий). Опасность радона заключается в его широком распространении, высокой проникающей способности и миграционной подвижности (активности), распаде с образованием радия и других высокоактивных радионуклидов. Период полураспада радона сравнительно невелик и составляет 3,823 суток. Радон трудно идентифицировать без использования специальных приборов, так как он не имеет цвета или запаха.

Одним из важнейших аспектов радоновой проблемы является внутреннее облучение радоном: образующиеся при его распаде продукты в виде мельчайших частиц проникают в органы дыхания, и их существование в организме сопровождается альфа-излучением.

 

Источники радиации, созданные человеком (техногенные)

 

Искусственные источники радиационного облучения существенно отличаются от естественных не только происхождением.

Во-первых, сильно различаются индивидуальные дозы, полученные разными людьми от искусственных радионуклидов. В большинстве случаев эти дозы невелики, но иногда облучение за счет техногенных источников гораздо более интенсивно, чем за счет естественных.

Во-вторых, для техногенных источников упомянутая вариабельность выражена гораздо сильнее, чем для естественных.

 Наконец, загрязнение от искусственных источников радиационного излучения (кроме радиоактивных осадков в результате ядерных взрывов) легче контролировать, чем природно-обусловленное загрязнение.

Энергия атома используется человеком в различных целях: в медицине, для производства энергии и обнаружения пожаров, для изготовления светящихся циферблатов часов, для поиска полезных ископаемых и, наконец, для создания атомного оружия.

Информация о работе Действие на организм человека высоких и малых доз радиации