История обнаружения атмосферного метана

Автор работы: Пользователь скрыл имя, 10 Марта 2014 в 11:17, реферат

Краткое описание

Увеличение содержания метана в атмосфере способствует усилению парникового эффекта, так как метан интенсивно поглощает тепловое излучение Земли в инфракрасной области спектра на длине волны 7,66 мкм. Метан занимает второе место после углекислого газа по эффективности поглощения теплового излучения Земли. Вклад метана в создание парникового эффекта составляет примерно 30% от величины, принятой для углекислого газа. С ростом содержания метана изменяются химические процессы в атмосфере, что может привести к ухудшению экологической ситуации на Земле. Естественно возникает вопрос об управлении химическими и физическими процессами, в которых принимает участие метан.

Содержание

Введение 3
История обнаружения атмосферного метана 4
Классификация метана по его происхождению 4
Общее содержание метана в атмосфере и его концентрация 5
Изменение концентрации метана во времени 5
Стоки метана 7
Источники выделения метана 11
Заключение 13
Литература 15

Вложенные файлы: 1 файл

Ноосфера.docx

— 39.39 Кб (Скачать файл)

СОДЕРЖАНИЕ

Введение                                                                                               3

История обнаружения атмосферного метана 4

Классификация метана по его происхождению 4

Общее содержание метана в атмосфере и его концентрация 5

Изменение концентрации метана во времени 5

Стоки метана 7

Источники выделения метана 11

Заключение 13

Литература 15

 

 

 

 

 

 

 

 

 

 

 

ВВЕДЕНИЕ

Метан - наиболее важный представитель органических веществ в атмосфере [1, 2]. Его концентрация существенно превышает концентрацию остальных органических соединений. В 60-е и 70-е годы количество метана в атмосфере возрастало со скоростью 1% в год, и это объяснялось хозяйственной деятельностью человечества.

Увеличение содержания метана в атмосфере способствует усилению парникового эффекта, так как метан интенсивно поглощает тепловое излучение Земли в инфракрасной области спектра на длине волны 7,66 мкм. Метан занимает второе место после углекислого газа по эффективности поглощения теплового излучения Земли. Вклад метана в создание парникового эффекта составляет примерно 30% от величины, принятой для углекислого газа. С ростом содержания метана изменяются химические процессы в атмосфере, что может привести к ухудшению экологической ситуации на Земле. Естественно возникает вопрос об управлении химическими и физическими процессами, в которых принимает участие метан. Если молекулы метана попадают в атмосферу, то они вовлекаются в процессы переноса и вступают в химические реакции, которые хорошо известны как качественно, так и количественно. Управление процессами непосредственно в атмосфере в глобальном масштабе практически исключено. До настоящего времени направленное воздействие на атмосферные процессы удавалось осуществлять только путем изменения мощности антропогенных источников. Поэтому важно понимать природу естественных и антропогенных источников метана и оценивать их мощность с достаточной степенью достоверности.

 

 

 

ИСТОРИЯ ОБНАРУЖЕНИЯ АТМОСФЕРНОГО МЕТАНА

История обнаружения атмосферного метана коротка [1]. Присутствие его в атмосфере открыто сравнительно недавно, в 1947 году. Концентрация метана невелика. В атмосферной химии для концентрации обычно используют долевые единицы, что связано с тем, что количество примесных молекул, таких, как метан, невелико. Часто концентрации выражают в частях на миллион или миллиард. Например, если концентрация примеси равна одной части на миллион, то это означает, что в одном моле воздуха присутствует 10- 6 молей примеси. Для удобства вводят обозначения типа ppm, что означает количество частей на миллион.

КЛАССИФИКАЦИЯ МЕТАНА ПО ЕГО ПРОИСХОЖДЕНИЮ

Источники метана разнообразны. Метан называется биогенным [3], если он возникает в результате химической трансформации органического вещества. Если метан образуется в результате деятельности бактерий, то он называется бактериальным (или микробным) метаном. Если его возникновение обязано термохимическим процессам, то он называется термогенным. Бактериальный метан образуется в донных отложениях болот и других водоемов, в результате процессов пищеварения в желудках насекомых и животных (преимущественно жвачных). Термогенный метан возникает в осадочных породах при их погружении на глубины 3-10 км, где осадочные породы подвергаются химической трансформации в условиях высоких температур и давлений. Метан, возникший в результате химических реакций неорганических соединений, называется абиогенным [3]. Он образуется обычно на больших глубинах в мантии земли.

 

 

ОБЩЕЕ СОДЕРЖАНИЕ МЕТАНА В АТМОСФЕРЕ И ЕГО КОНЦЕНТРАЦИЯ

В настоящее время концентрация атмосферного метана составляет 1,8 ppm. Общее количество метана в атмосфере оценивают в пределах 4600-5000 Тг (Тг = 1012 г). В южном полушарии концентрация метана несколько ниже, чем в северном полушарии. Такое различие обычно связывают с меньшей мощностью источников метана в южном полушарии: считается, что основные источники метана расположены на континентах, а океаны не вносят заметного вклада в глобальный поток метана. Время жизни метана в атмосфере 8-12 лет [1].

Метан находится в атмосфере в основном в приземном слое, который называется тропосферой и толщина которого составляет 11-15 км. Концентрация метана мало зависит от высоты в интервале от поверхности Земли до тропопаузы, что обусловлено большой скоростью перемешивания по высоте в пределах 0-12 км (1 месяц) в сравнении со временем жизни метана в атмосфере.

ИЗМЕНЕНИЕ КОНЦЕНТРАЦИИ МЕТАНА ВО ВРЕМЕНИ

Изменение концентрации метана в атмосфере Земли примечательно тем, что позволяет наглядно представить себе характер и масштаб влияния человеческой деятельности на глобальные процессы. Концентрация метана в 70-е годы увеличивалась в атмосфере со скоростью 0,8-1,2% в год, что эквивалентно увеличению концентрации на 16,5 ppbv (ppbv - одна часть на миллиард) в год, а прирост его массы в атмосфере составлял 45 Тг/год. Возникает вопрос, всегда ли было так, что концентрация атмосферного метана ежегодно возрастала. Оказывается, можно проследить изменения в концентрации метана на протяжении 150 тысяч лет и более. С этой целью отбирают керны в материковых льдах Антарктиды или Гренландии. В частности, большое число данных получено на российской станции "Восток" в Антарктиде. Лед в кернах имеет разный возраст: чем глубже он расположен, тем он старше. Состав воздуха в пустотах льда на различной глубине соответствует составу атмосферы в момент образования льда.

Изменение концентрации метана в атмосфере Земли за последние 140 тыс. лет представлены на рис. 1. Кривая осадков характеризует оледенения: мало осадков - оледенение, много осадков - потепление. Из рис. 1 видно, что во время оледенений концентрация метана падала и иногда достигала рекордно низких значений (например, 0,35 ppm). Важно отметить, что концентрация метана до новой эры никогда не превышала 0,7 ppm. Естественно, что до новой эры интенсивность хозяйственной деятельности человечества была незначительной и поэтому наблюдаемая концентрация метана обеспечивалась только естественными факторами.

Анализы показывают, что от Рождества Христова вплоть до XVII века концентрация метана в атмосфере Земли была практически постоянной и составляла примерно 0,7 ppm. Затем концентрация метана стала повышаться и одновременно начался интенсивный рост населения Земли (рис. 2). На рис. 2 видно, что за последние 300 лет концентрация метана возросла на 1,1 ppm. Можно полагать, что этот прирост обусловлен деятельностью человечества. Из данных рис. 2 следует, что в период с начала 60-х годов по настоящее время произошло удвоение прироста концентрации метана, составившее примерно 0,55 ppm и за это же время удвоилось население земного шара.

Интересное событие произошло в 80-90-е годы: прирост концентрации метана начал падать. Причины этого не вполне ясны. Высказывалось робкое предположение, что это связано с тем, что Россия смогла починить свои газопроводы и это привело к остановке в росте концентрации метана. Однако простые оценки показывают [4], что Россия не имеет к этому никакого отношения и что, скорее всего, включились некоторые факторы пока неизвестной природы. Более детальное рассмотрение указанных явлений требует знаний о механизмах поступления метана в атмосферу и о процессах вывода метана из атмосферы.

СТОКИ МЕТАНА

Рассмотрение поведения метана в атмосфере начнем с процессов исчезновения метана. Дело в том, что процессы вывода метана из атмосферы известны в количественном отношении гораздо полнее, чем процессы, обеспечивающие поступление метана в атмосферу. Интенсивность процессов стока метана должна быть примерно равной интенсивности источников метана, что позволяет более надежно судить о мощности источников метана в атмосфере.

Молекула метана довольно устойчива, и ее нелегко вывести из атмосферы. Метан малорастворим в воде (30 см3 газа растворяется в одном литре воды), и удаление его из атмосферы с помощью осадков не происходит. Для реального удаления из атмосферы метан необходимо переводить в нелетучие соединения или другие газообразные соединения.

Метан, как и многие другие примеси, исчезает из атмосферы, в основном в реакции с радикалом ОН:

ОН + СН4 = Н2О + СН3

Если концентрация метана в атмосфере не растет, то это означает, что скорость поступления метана в атмосферу равна скорости его вывода. Поэтому количественные характеристики этой реакции между метаном и радикалом OH чрезвычайно важны, так как ошибка в 25% приведет к ошибке примерно в 25% в расчете мощности источников метана. Параметры этой реакции определялись многократно, и тем не менее последние данные показывают, что 10-15 лет назад скорость реакции определялась завышенной примерно на 25%. Это означает, что поток метана в атмосферу с поверхности Земли составляет примерно 400, а не 500 Тг/год, как считалось ранее. Возникает естественный вопрос об источнике радикалов ОН. Необходимо отметить, что радикал ОН - одна из наиболее реакционноспособных частиц в химических процессах. Источником радикала ОН в тропосфере является тропосферный озон (О3). Под действием ультрафиолетового света с длиной волны короче 310 нм молекулы тропосферного озона разрушаются с образованием молекулы кислорода и чрезвычайно реакционноспособного атома кислорода в возбужденном электронном состоянии:

О3 + hn (310 нм и короче) = О2 + О*

Атомы кислорода отрывают один атом водорода от воды и получается два радикала ОН:

О* + Н2О = 2ОН

Итак, реакции в атмосфере, приводящие к выводу метана, таковы:

ОН + СН4 = Н2О + СН3 ,

CH3 + O2 = CH3O2 ,

CH3O2 + NO = CH3O + NO2 ,

CH3O + O2 = CH2O + HO2 ,

НО2 + NO = OH + NО2 ,

2[NO2 + hn = NO + O],

CH4 + 4O2 = CH2O + H2O + 2O3

Таким образом, в результате многоступенчатого процесса образуются по одной молекуле формальдегида и воды и две молекулы озона. NO и NO2 (NOx) всегда присутствуют в атмосфере в количествах, достаточных для протекания реакций с их участием.

Из приведенных реакций видно образование нестабильных валентно-ненасыщенных частиц, таких, как CH3O2 или HO2 . Эти частицы играют важную роль в процессах в атмосфере. Формально их образование можно представить в процессах отрыва атома водорода от стабильных молекул метилгидроперекиси и перекиси водорода соответственно. Присутствие свободной валентности приводит к высокой реакционной способности, так как эти частицы стремятся к образованию стабильных связей и насыщению валентностей.

Разложение метана до конечных продуктов еще не закончено. Образующиеся молекулы формальдегида начинают участвовать в следующих трех реакциях, которые дают начало новым циклам:

CH2O + hn = H2 + CO,

СН2O + hn = Н + НСO,

CH2O + OH = HCO + H2O

В среднем для атмосферы вероятности протекания этих процессов относятся как 0,5 : 0,25 : 0,25 соответственно, а вторая и третья реакции дают начало следующим циклам, протекающим в присутствии NОх :

CH2O + hn = H + HCO,

H + O2 = HO2 ,

HCO + O2 = CO + HO2 ,

2[НО2 + NO = OH + NО2],

2[NO2 + hn = NO + O],

CH2O + 4O2 + hn = CO + 2O3 + 2OH

В результате этого цикла возникают две молекулы озона и два радикала ОН. Таким образом, метан в присутствии NОx претерпевает конверсию в окислитель, каким является озон. Реакция формальдегида с радикалом ОН также приводит к образованию озона:

CH2O + OH = HCO + H2O,

HCO + O2 = CO + HO2 ,

НО2 + NO = OH + NО2 ,

NO2 + hn = NO + O,

CH2O + 2O2 + hn = CO + O3 + H2O

Далее необходимо рассмотреть реакции СО:

CO + OH = CO2 + H,

H + O2 = HO2 ,

НО2 + NO = OH + NО2 ,

NO2 + hn = NO + O,

CO + 2O2 + hn = CO2 + O3

В итоге вместо одной исчезнувшей в атмосфере молекулы метана возникает 3,5 молекулы озона и 0,5 радикала ОН.

Химический сток в атмосфере - это основной канал вывода метана из атмосферы. Из других стоков некоторое значение имеют поглощение метана почвенными бактериями и уход в стратосферу. Оба стока вносят вклад менее 10% в общий сток метана.

Также важно отметить, что в атмосфере помимо метана присутствуют и его гомологи. Они также подвергаются реакциям окисления, причем на скорость реакции влияет разветвленность и длина углеродной цепи радикала - более длинные и разветвленные молекулы быстрее окисляются.

В общем, пример окисления гомологов метана в атмосфере можно представить в виде схемы окисления бутана:

2C4H10+HO•→CH3-CH2-CH2-CH2•+CH3-CH•-C2H5+H2O

CH3-CH•-C2H5+O2→CH3-CH2-CH-(CH3)-O-O•→

→(NO)CH3-CH2-CH-(O•)-CH3→1)CH3-CH2-C(=O)-CH3

2)CH3-CH2-CHO+CH3•

3)CH3CH2•+CH3CHO

Далее этильный и метильный радикалы окисляются по схеме, аналогичной схеме окисления метана.

ИСТОЧНИКИ ВЫДЕЛЕНИЯ МЕТАНА

Метан попадает в атмосферу как из естественных, так и из антропогенных источников. Мощность антропогенных источников в настоящее время существенно превышает мощность естественных. Некоторые из реакций, в результате которых образуется метан, могут быть выражены следующими схемами:

CH3COOH→CH4+CO2

CH2SH+H2→СН4+Н2S

CH3NH2+H2→CH4+NH3

CO2+4H2→CH4+2H2O

К естественным источникам метана относятся болота, тундра, водоемы, насекомые (главным образом термиты), метангидраты, геохимические процессы.

Интенсивность выделения метана из болот меняется в широких пределах. Эмиссия метана от западносибирских болот, которые являются достаточно типичным представителем северных болот, определенная с применением методов газовой хроматографии, составляет примерно 9 мг метана в ч/м2. В среднем эмиссия метана из сибирских болот может достигать 20 Тг/год, что довольно много в сопоставлении с общим потоком метана от болот (50-70 Тг). Нужно сказать, что точность определения эмиссии метана от болот затруднена большим разбросом величин эмиссии при измерении даже на близко расположенных участках. Например, величина эмиссии метана в западно-сибирских болотах колебалась в интервале от 0,1 до 40 мг/(м2 * ч).

Растительные остатки можно представить состоящими из двух основ-

ных частей: лигнина и целлюлозы. Хорошо известно, что лигнин гораздо

меньше поддается воздействию бактерий. Трансформация целлюлозы про-

Информация о работе История обнаружения атмосферного метана