Автор работы: Пользователь скрыл имя, 06 Февраля 2014 в 17:33, курсовая работа
Цель курсовой работы: определить экологическое состояние атмосферного воздуха в промышленной зоне.
Для выполнения поставленной цели решаются следующие задачи:
1. Определить общую нагрузку на атмосферу промышленной зоны стационарных источников и выявить динамику её изменений по годам.
2. Выявить основные техногенные примеси и источники их выброса в ат-мосферу.
3. Определить категории опасности веществ и предприятий.
4. Рассчитать размеры зоны загрязнения вокруг источников и дать анализ местоположению объекта.
5. Составить список веществ подлежащих контроля в промышленной зоне по годам исследований.
6. Дать оценку экологическому состоянию атмосферы.
7. Составить прогнозы
8. Сделать соответствующие выводы.
Туманы имеют частицы правильной сферической формы (результат самопроизвольного уменьшения поверхности жидкости), тогда как пыли и дымы содержат твердые частицы самой разнообразной формы. К типичным аэрозолям можно отнести туман, состоящий из капелек водяного пара, размер частиц которых в среднем составляет 0,5 мкм, топочный дым (сажа) – 0,1–100 мкм, дождевые облака – 10–100 мкм и др.
При некоторых погодных условиях могут образовываться особо большие скопления вредных аэрозольных примесей в приземном слое воздуха. Обычно это происходит в тех случаях, когда в слое воздуха непосредственно над источниками газопылевой эмиссии существует инверсия – расположение слоя более холодного воздуха под теплым, что препятствует воздушным массам и задерживает перенос примесей вверх. В результате вредные выбросы сосредотачиваются под слоем инверсии, содержание их у земли резко возрастает, что становится одной из причин образования ранее неизвестного в природе фотохимического тумана [4].
Фотохимический туман (смог) представляет собой многокомпонентную смесь газов и аэрозольных частиц первичного и вторичного происхождения. В состав основных компонентов смога входят озон, оксиды азота и серы, многочисленные органические соединения перекисной природы, называемые в совокупности фотооксидантами. Фотохимический смог возникает в результате фотохимических реакций при определенных условиях:
• наличие в атмосфере высокой концентрации оксидов азота, углеводородов и других загрязнителей;
• интенсивная солнечная радиация и безветрие или очень слабый обмен воздуха в приземном слое при мощной и повышенной (не менее суток) инверсии.
По своему физиологическому воздействию на организм человека смог крайне опасен для дыхательной и кровеносной системы, часто бывают причиной преждевременной смерти городских жителей с ослабленным здоровьем [4].
Важнейшее свойство аэрозолей – способность частиц сохраняться во взвешенном состоянии, перемещаться преимущественно как единое целое и при столкновении коагулировать друг с другом. В покоящейся среде частицы аэрозоля поддерживаются во взвешенном состоянии в поле гравитации благодаря их собственному тепловому движению. Однако в атмосфере на аэрозоли помимо радиационного температурного прогрева, поля силы тяжести действуют и другие силы. Прежде всего это горизонтальные и вертикальные движения воздуха, называемые ветром. Горизонтальные движения связаны с циркуляцией атмосферы, перемещением барических образования (циклонов и антициклонов), и есть следствие неодинакового прогрева земной поверхности. Вертикальные смещения связаны с турбулентностью в атмосфере.
Под действием силы тяжести в аэрозольном облаке происходит направленное перемешивание менее плотной фазы вверх (всплывание), а более плотной – вниз (оседание или седиментация). Капли тумана или частицы аэрозоля стремятся под действием силы тяжести осесть. В случае облаков это проявляется в виде дождя или снега [4].
1.2.3. Твердые аэрозоли
Источниками естественных аэрозолей являются океаны, космическая пыль, частицы почвы и горных пород, поднимаемых в воздух при ветровой эрозии, органические вещества – пыльца растений, споры, бактерии и др., частицы дыма, возникающие при лесных и торфяных пожарах, продукты вулканических извержений.
Атмосферные аэрозоли над океаном образуются в результате разбрызгивания капель морской воды и их последующего испарения. Капли образуются при сдувании ветром брызг с гребней волн, при выпадении на водную поверхность осадков, в прибойной зоне побережий. Основным компонентом морских аэрозолей является хлорид натрия, однако в них присутствуют карбонаты, сульфаты, калий, магний и кальций, органических соединений. Взвешенные в воздухе солевые частицы в прибрежных районах наносят значительный ущерб сельскохозяйственным культурам и вызывают коррозию металлов [4].
Важным источником аэрозолей являются вулканы, но их вклад сильно варьирует во времени и пространстве. Одно мощное извержение может многократно превысить выброс частиц в атмосферу, который происходит в периоды «спокойной» вулканической деятельности. Например, извержение вулкана Агунг на о. Бали в 1963 г. выбросило большое количество аэрозолей в тропосферу и стратосферу, вызвав на всем земном шаре весьма эффектные вечерние зори. Появление аэрозолей в стратосфере в результате этого извержения вызвало повышение там температуры примерно на 5 ˚С. Вулканические аэрозоли представляют собой тонко измельченную лаву либо капли серной кислоты, содержащей растворы сульфатов, галогенидов, следы никеля и хрома.
Степные, кустарниковые и лесные пожары являются еще одним важным источником тропосферных аэрозолей. Зола, выбрасываемая при пожарах в атмосферу, состоит из неорганических веществ, минералов, первоначально присутствовавших в тканях растений. В золе имеются частицы углерода, не полностью сгоревшие смолистые вещества. Крупные лесные пожары могут быть источниками атмосферных аэрозолей, заметных в глобальном масштабе.
Метеорная пыль может быть двух видов. Так, субмикронные частицы из межпланетного пространства могут достигать земной поверхности в неизменном виде. Более крупные частично сгорают или расплавляются.
Частицы биологического происхождения переносятся на большие расстояния. Споры грибов, например, находили над океаном на расстоянии 1000 км, а пыльцу – в 2500 км от возможного ближайшего источника. Морские бактерии обнаружены в пробах воздуха более чем в 100 км от побережья [4].
Аэрозоли антропогенного происхождения составляют примерно 20% от естественного содержания аэрозолей. Они образуются в основном при сжигании твердого и жидкого топлива. Кроме того, ряд производств, например, цементные заводы, выбрасывают в атмосферу большое количество пыли. Пространственное распределение антропогенных аэрозолей неравномерно, и они являются загрязнителями атмосферы, играя пагубную роль как в отношении человека и животных, так и растительных сообществ.
Атмосферный аэрозоль подразделяют также на:
• тропосферный (до высоты приблизительно 10 км);
• стратосферный (10–50 км).
Аэрозольные частицы проникают в стратосферу в результате вулканических извержений, заноса ядер конденсации при развитии кучево-дождевых облаков, вершины которых выходят за пределы тропосферы. Определенный вклад в формирование стратосферных аэрозолей вносит высотная авиация, запуски ракет-носителей и т.д. В стратосфере отмечаются также аэрозоли внеземного происхождения, содержащие следы никеля [4].
Диспергационные аэрозоли с
твердыми частицами (пыли) образуются
в атмосфере в природных
При взрывном разрушении твердых тел происходит, как правило, диспергирование вещества и его испарение с последующей конденсацией паров и образованием аэрозолей.
Размер твердых частиц, наблюдаемых в атмосфере, колеблется в широких пределах: от тысячных и сотых долей до нескольких десятков микрометров. В зависимости от размера аэрозольные частицы делят на три класса:
• тонкодисперсные (r < 0,1 мкм);
• среднедисперсные (r = 0,1–1 мкм);
• грубодисперсные (r > 1 мкм).
Тонкодисперсный аэрозоль вносит существенный вклад в поглощение радиации и, как следствие, в изменение термического режима атмосферы [1].
Количество аэрозолей в атмосфере огромно, существует их постоянный приток и сток. Более крупные частицы осаждаются сами, более мелкие вымываются дождем или снегом. Продолжительность пребывания аэрозолей в атмосфере определяет их так называемое «время жизни». В тропосфере время жизни аэрозолей составляет от 6 до 40 суток. В стратосфере среднее время жизни аэрозольных частиц увеличивается с высотой: до месяца в слое 10–12 км, 1–2 года на высоте 20 км и от 4 до 20 лет на высоте50 км.
Проблемы, связанные с аэрозолями многогранны. Аэрозоли могут оказывать влияние на формирование климата как Земли в целом, так и в отдельных её районах. Важнейшей положительной ролью аэрозолей является ядрообразование, т.е. свойство конденсировать воду. Однако, они могут изменять отражательную способность планеты Земля и тем самым изменять глобальную температуру [4].
1.3. Состояние атмосферы в Республике Беларусь
Изменение климата Республики Беларусь связано с естественными и антропогенными факторами. Исходя из средних оценок, ожидаемые изменения газового и аэрозольного состава атмосферы, обусловленные в основном антропогенной деятельностью, приведут к увеличению средней годовой температуры на территории республики приблизительно на 1°С к 2025 году. На фоне общего потепления резко возрастут внутригодовые (межсезонные) и межгодовые колебания температуры и осадков, увеличится число погодных и климатических экстремальных явлений.
Проведенные исследования показали, что глобальное потепление связано с выбросами парниковых газов в различных отраслях экономики, в первую очередь в энергетике. Уровень выбросов парниковых газов в республике составляет в настоящее время порядка 60 млн. тонн в эквиваленте диоксида углерода.
Наблюдается тенденция снижения над территорией республики общего содержания озона, что сопровождается повышением уровня приземного ультрафиолетового излучения, что негативно отражается на здоровье населения республики, функционировании экосистем и росте числа заболеваний, инициированных ультрафиолетовой радиацией [8].
Основные проблемы в области охраны атмосферного воздуха связаны с его загрязнением вредными выбросами от стационарных и передвижных источников. Выбросы загрязняющих веществ от стационарных источников характеризуются как общее количество загрязняющих веществ, поступающих в атмосферный воздух от всех организованных и неорганизованных стационарных источников. В структуре выбросов преобладают оксид углерода (56,4 процента), диоксид серы (6,9), оксиды азота (11,1) и углеводороды (14,3 процента). Сокращение выбросов от стационарных источников происходит как за счет строительства установок очистки газов, так и за счет внедрения новых технологий, использования топлива, сырья и материалов, позволяющих снизить вредное воздействие на атмосферный воздух. Решение вопросов повышения энергоэффективности производств, использование возобновляемых источников энергии способствуют также решению экологических проблем по сокращению выбросов загрязняющих веществ в атмосферный воздух [8,15].
Выбросы загрязняющих веществ мобильными источниками рассчитываются на основании количества потребляемого топлива. Выбросы от мобильных источников на территории республики характеризуются некоторым ростом, который в зависимости от вещества составляет от 8 до 17%. Максимальный объем выбросов отмечается в Минске и Минской области, минимальный – в Могилевской области [15].
Основными направлениями деятельности в области охраны атмосферного воздуха являются:
• совершенствование экологической политики и формирование гибкой системы экономического стимулирования в области охраны атмосферного воздуха;
• использование новых технических методов и средств минимизации выбросов;
• комплексный учет воздействия хозяйственной деятельности на окружающую среду;
• повышение экологической безопасности транспорта, обновление, модернизация подвижного состава, совершенствование инфраструктуры транспортного комплекса страны;
• внедрение новейших технологий и методов наблюдений, включая дистанционные, за состоянием атмосферного воздуха, а также расширение перечня определяемых загрязняющих веществ, необходимых для получения достоверной информации и принятия оперативных управленческих решений [8].
Показатель качества атмосферного
воздуха характеризует
В настоящее время мониторинг состояния атмосферного воздуха в Беларуси проводится в 18 промышленных городах, включая областные центры, а также Полоцк, Новополоцк, Оршу, Бобруйск, Мозырь, Речицу, Светлогорск, Пинск, Новогрудок, Жлобин, Лиду и Солигорск. Регулярными наблюдениями охвачены территории, на которых проживает 81,3% населения крупных и средних городов страны. Сеть мониторинга атмосферного воздуха включает 61 станцию. В Минске, Витебске и Могилеве функционируют автоматические станции, позволяющие получать информацию о содержании в воздухе приоритетных загрязняющих веществ в режиме реального времени.
Во всех городах в воздухе определяются концентрации основных загрязняющих веществ: суммарных твердых частиц, диоксида серы, оксида углерода, диоксида азота. Измеряются также концентрации приоритетных специфических загрязняющих веществ: формальдегида, аммиака, фенола, сероводорода, сероуглерода. Во всех контролируемых городах определяется содержание в воздухе свинца и кадмия, в 16 городах – бензапирена, в 9 городах – летучих органических соединений (ЛОС). При оценке качества атмосферного воздуха учитываются среднесуточные и максимально разовые предельно допустимые концентрации (ПДК) загрязняющих веществ. Для станций с дискретным отбором проб средние за год значения сравниваются с ПДК среднесуточными, а максимальные – с максимально разовыми. Кроме того, для оценки состояния атмосферного воздуха используются такие показатели, как количество дней в году, в течение которых установлены превышения среднесуточных ПДК, и повторяемость (доля) проб с концентрациями выше максимально разовых ПДК. Средние за год концентрации основных и специфических загрязняющих веществ в подавляющем большинстве контролируемых городов Беларуси ниже нормативов качества. В отдельных городах зафиксированы превышения среднесуточных ПДК суммарных твердых частиц, оксида углерода и диоксида азота. Уровень загрязнения воздуха диоксидом серы сохраняется стабильно низким: как среднегодовые, так и максимальные разовые концентрации находятся существенно ниже нормативов качества. Состояние атмосферного воздуха в городах Бобруйске, Гродно, Новогрудке, Светлогорске, Лиде, Солигорске и в большинстве контролируемых районов Бреста, Витебска, Минска, Гомеля, Мозыря и Пинска в 2009 г. оценивалось как стабильно хорошее.
Информация о работе Оценка экологического состояния атмосферы в промышленной зоне