Очистка газов

Автор работы: Пользователь скрыл имя, 07 Ноября 2013 в 21:10, реферат

Краткое описание

Экологические проблемы, имеющие в настоящее время глобальный социальный характер, наиболее ярко проявились в нефтеперерабатывающей отрасли, где огромная энергонасыщенность предприятий, образование и выбросы вредных веществ создают не только техногенную нагрузку на окружающую среду, но и общественно-политическую напряженность в обществе. Постоянно интенсифицируются технологии, вследствие чего такие параметры как температура, давление, содержание опасных веществ, достигают критических величин. Растут единичные мощности аппаратов, количество находящихся в них опасных веществ. Многие виды продукции нефтеперерабатывающих заводов с передовой технологией, обеспечивающей комплексную переработку сырья и состоящей из сотен позиций взрывоопасны и пожароопасны или токсичны.

Вложенные файлы: 1 файл

очистка газов.docx

— 217.41 Кб (Скачать файл)

В большинстве промышленных газоочистительных установок комбинируется  несколько приемов очистки от аэрозолей, причем конструкции очистных аппаратов весьма многочисленны.

Гравитационное  осаждение основано на осаждении взвешенных частиц под действием силы тяжести при движении запыленного газа с малой скоростью без изменения направления потока. Процесс проводят в отстойных газоходах и пылеосадительных камерах.

Инерционное осаждение основано на стремлении взвешенных частиц сохранять первоначальное направление движения при изменении направления газового потока. Среди инерционных аппаратов наиболее часто применяют жалюзийные пылеуловители с большим числом щелей (жалюзи).

Центробежные  методы очистки газов основаны на действии центробежной силы, возникающей при вращении очищаемого газового потока в очистном аппарате или при вращении частей самого аппарата. В качестве центробежных аппаратов пылеочистки применяют циклоны различных типов: батарейные циклоны, вращающиеся пылеуловители (ротоклоны) и др. Циклоны наиболее часто применяют в промышленности для осаждения твердых аэрозолей.

Мокрая очистка  газов от аэрозолей основана на промывке газа жидкостью (обычной водой) при возможно более развитой поверхности контакта жидкости с частицами аэрозоля и возможно более интенсивном перемешивании очищаемого газа с жидкостью. Этот универсальный метод очистки газов от частиц пыли, дыма и тумана любых размеров является наиболее распространенным приемом заключительной стадии механической очистки, в особенности для газов, подлежащих охлаждению. В аппаратах мокрой очистки применяют различные приемы развития поверхности соприкосновения жидкости и газа.

 

 

Электростатическая  очистка газов служит универсальным средством, пригодным для любых аэрозолей, включая туманы кислот, и при любых размерах частиц. Метод основан на ионизации и зарядке частиц аэрозоля при прохождении газа через электрическое поле высокого напряжения, создаваемое коронирующими электродами. Осаждение частиц происходит на заземленных осадительных электродах.

 

3. Очистка газов от парообразных и газообразных примесей.

Газы в промышленности обычно загрязнены вредными примесями, поэтому очистка широко применяется  на заводах и предприятиях для  технологических и санитарных (экологических) целей. Промышленные способы очистки  газовых выбросов от газо- и парообразных токсичных примесей можно разделить  на три основные группы:

абсорбция жидкостями;

адсорбция твердыми поглотителями;

каталитическая очистка;

В меньших масштабах применяются  термические методы сжигания (или  дожигания) горючих загрязнений, способ химического взаимодействия примесей с сухими поглотителями и окисление  примесей озоном.

Абсорбция жидкостями применяется в промышленности для извлечения из газов диоксида серы, сероводорода и других сернистых соединений, оксидов азота, паров кислот (НСl, HF, H2SO4), диоксида и оксида углерода, разнообразных органических соединений (фенол, формальдегид, летучие растворители и др.).

Абсорбционные методы служат для технологической и санитарной очистки газов. Они основаны на избирательной  растворимости газо- и парообразных примесей в жидкости (физическая абсорбция) или на избирательном извлечении примесей химическими реакциями  с активным компонентом поглотителя (хемосорбция). Абсорбционная очистка  – непрерывный и, как правило, циклический процесс, так как поглощение примесей обычно сопровождается регенерацией поглотительного раствора и его возвращением в начале цикла очистки. При физической абсорбции (и в некоторых хемосорбционных процессах) регенерацию абсорбента проводят нагреванием и снижением давления, в результате чего происходит десорбция поглощенной газовой примеси и ее концентрирование.

Каталитические методы очистки газов основаны на реакциях в присутствии твердых катализаторов, т. е. на закономерностях гетерогенного катализа. В результате каталитических реакций примеси, находящиеся в газе, превращаются в другие соединения, т. е. в отличие от рассмотренных методов примеси не извлекаются из газа, а трансформируются в безвредные соединения, присутствий: которых допустимо в выхлопном газе, либо в соединения, легко удаляемые из газового потока. Если образовавшиеся вещества подлежат удалению, то требуются дополнительные операции (например, извлечение жидкими или твердыми сорбентами). Адсорбционно-каталитические методы применяют для очистки промышленных выбросов от диоксида серы, сероводорода и серо-органических соединений. Катализатором окисления диоксида серы в триоксид и сероводорода в серу служат модифицированный добавками активированный уголь и другие углеродные сорбенты.

Термические методы обезвреживания газовых выбросов применимы при высокой концентрации горючих органических загрязнителей или оксида углерода. Простейший метод — факельное сжигание — возможен, когда концентрация горючих загрязнителей близка к нижнему пределу воспламенения. В этом случае примеси служат топливом, температура процесса 750—900 °С и теплоту горения примесей можно утилизировать.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Основные аппараты  очистки

                                    

                                            

 

           Рис 1. Реактор полного смешения – скруббер Вентури:

1 – сопло; 2 – горловина; 3 – камера смешения; 4 – разделительная камера.

 

Главный дефект скруббера  Вентури — большой расход энергии по преодолению высокого гидравлического сопротивления, которое в зависимости от скорости газа в горловине может составлять 0,002-0,013 МПа. Помимо того, аппарат не отличается надежностью в эксплуатации, управление им сложное.

 

                      

Рис 2. Схема мокрого пылеулавливания с предварительной электризацией:

1 – камера электризации; 2 – коронирующий электрод; 3 – пенный аппарат;4 – газожидкостный (пенный) слой; 5 – заземленная решетка; I – очищаемый газ; II – вода; III – очищенный газ; IV – слив шлама

 

 

 

 

Коагуляцию аэрозолей методом предварительной электризации производят, например, пропусканием газа через электризационную камеру с коронирующими электродами, где происходит зарядка и коагуляция частиц, а затем через мокрый газоочиститель, в котором газожидкостный слой служит осадительным электродом (рис. 2). Осадительным электродом может служить пенный слой в пенных аппаратах, слой газожидкостной эмульсии в насадочных скрубберах и других мокрых газопромывателях, в которых решетки или другие соответствующие детали должны быть заземлены.

 

 

                        

Рис. 3. Схема установки для абсорбционно-десорбционного метода разделения газов:

1 — абсорбер; 2 — десорбер; 3 — теплообменник; 4 — холодильник

 

Абсорбенты, применяемые в промышленности, оцениваются по следующим показателям: 1) абсорбционная емкость, т. е. растворимость извлекаемого компонента в поглотителе в зависимости от температуры и давления; 2) селективность, характеризуемая соотношением растворимостей разделяемых газов и скоростей их абсорбции; 3) минимальное давление паров во избежание загрязнения очищаемого газа парами абсорбента; 4) дешевизна; 5) отсутствие коррозирующего действия на аппаратуру. В качестве абсорбентов применяют воду, растворы аммиака, едких и карбонатных щелочей, солей марганца, этаноламины, масла, суспензии гидроксида кальция, оксидов марганца и магния, сульфат магния и др.

Очистная аппаратура аналогична уже рассмотренной аппаратуре мокрого  улавливания аэрозолей. Наиболее распространен  насадочный скруббер, применяемый для  очистки газов от диоксида серы, сероводорода, хлороводорода, хлора, оксида и диоксида углерода, фенолов и т. д.

 

 

                             

Рис. 4. Схема абсорбционной очистки газов от СО2 с получением товарного диоксида углерода:

1 — холодильник; 2 — воздуходувка; 3 — пенный абсорбер; 4 — насос; 5 — теплообменник; 6 — пенный  десорбер; 7 — кипятильник десорбера; I — газ на очистку;

II — вода; III — очищенный  газ; IV — диоксид углерода потребителю; V — пар

 

Примером безотходной абсорбционно-десорбционной циклической схемы может служить поглощение диоксида углерода из отходящих газов растворами моноэтаноламина с последующей регенерацией поглотителя при десорбции СО2. На рис. 4 приведена схема абсорции СО2 в пенных абсорберах; десорбция СО2 проводится также при пенном режиме. Установка безотходна, так как чистый диоксид углерода после сжижения передается потребителю в виде товарного продукта.

Абсорбционные методы характеризуются  непрерывностью и универсальностью процесса, экономичностью и возможностью извлечения больших количеств примесей из газов. Недостаток этого метода в том, что насадочные скрубберы, барботажные и даже пенные аппараты обеспечивают достаточно высокую степень извлечения вредных примесей (до ПДК) и полную регенерацию поглотителей только при большом числе ступеней очистки. Поэтому технологические схемы мокрой очистки, как правило, сложны, многоступенчаты и очистные реакторы (особенно скрубберы) имеют большие объемы.

Любой процесс мокрой абсорбционной  очистки выхлопных газов от газо- и парообразных примесей целесообразен  только в случае его цикличности  и безотходности. Но и циклические  системы мокрой очистки конкурентоспособны только тогда, когда они совмещены  с пылеочисткой и охлаждением газа.

 

 

 

                  

Рис. 5. Схема адсорбционной газоочистной установки:

1— фильтр; 2, 3 — адсорберы; 4 — конденсатор; 5 — сепаратор; I — очищаемый газ; II — очищенный газ; III—водяной пар; IV — неконденсируемые пары; V—сконденсированный адсорбтив в хранилище; VI — водный конденсат

 

Недостатки большинства  адсорбционных установок — периодичность  процесса и связанная с этим малая  интенсивность реакторов, высокая  стоимость периодической регенерации  адсорбентов. Применение непрерывных  способов очистки в движущемся и  кипящем слое адсорбента частично устраняет  эти недостатки, но требует высокопрочных  промышленных сорбентов, разработка которых  для большинства процессов еще  не завершена.

                                         

Рис. 6. Катионитовый фильтр:

1 – катионит; 2 – песок

Адсорбционно-каталитические методы применяют для очистки  промышленных выбросов от диоксида серы, сероводорода и серо-органических соединений. Катализатором окисления диоксида серы в триоксид и сероводорода в серу служат модифицированный добавками активированный уголь и другие углеродные сорбенты. В присутствии паров воды на поверхности угля в результате окисления SO2 образуется серная кислота, концентрация которой в адсорбенте составляет в зависимости от количества водяного пара при регенерации угля от 15 до 70%.

 

                          

Рис. 7. Схема каталитической очистки газа от сероводорода во взвешенном слое активного угля:

1 – циклон-пылеуловитель; 2 – реактор со взвешенным слоем; 3 – бункер с питателем; 4 – сушильная камера; 5 – элеватор; 6 – реактор промывки катализатора (шнек); 7 – реактор экстракции серы (шнек-растворитель);

I – газ на очистку; II – воздух с добавкой NH3; III – раствор (NH4)2Sn на регенерацию;

IV – раствор (NH4)2S; V – регенерированный уголь; VI – свежий активный уголь;

VII – очищенный газ; VIII – промывные воды.

 

Активаторами этой каталитической реакции служат водяной пар и аммиак, добавляемый к очищаемому газу в количестве ~0,2г/м3. Активность катализатора снижается по мере заполнения его пор серой и когда масса S достигает 70—80% от массы угля, катализатор регенерируют промывкой раствором (NH4)2S. Промывной раствор полисульфида аммония разлагают острым паром с получением жидкой серы.

Представляет большой  интерес очистка дымовых газов  ТЭЦ или других отходящих газов, содержащих SO2 (концентрацией 1-2% SO2), во взвешенном слое высокопрочного активного угля с получением в качестве товарного продукта серной кислоты и серы.

Другим примером адсорбционно-каталитического  метода может служить очистка  газов от сероводорода окислением на активном угле или на цеолитах во взвешенном слое адсорбента-катализатора.

 

 

Заключение

 

Загрязнение воздушного бассейна происходит при всех технологических  процессах переработки нефти: на атмосферно-вакуумых и вакуумных установках, установках каталитического и термического крекинга, контактной очистки масел и коксования, гидроформинга и депарафинизации, производства битумов. Источниками загрязнений также являются трубчатые печи, факелы и объекты общезаводского хозяйства: резервуары для хранения нефти и нефтепродуктов, открытые дренажи колонн и агрегатов, лотки, канализационные колодцы и открытые поверхности очистных сооружений — песколовок, нефтеловушек, пруды дополнительного отстоя, кварцевые фильтры, аэротенки I и II ступени, вторичные и третичные отстойники после аэротенков, пруды-накопители. Дополнительная загазованность атмосферного воздуха происходит при нарушении герметичности оборудования. Основными загрязнителями воздушного бассейна являются сероводород, сернистый газ, оксиды азота, оксид углерода, предельные и непредельные углеводороды.

Информация о работе Очистка газов