Автор работы: Пользователь скрыл имя, 27 Ноября 2015 в 16:21, реферат
Пластмассы – это химическая продукция, состоящая из высокомолекулярных, длинноцепных полимеров. Производство пластических масс на современном этапе развития возрастает в среднем на 5…6 % ежегодно и к 2010 г., по прогнозам, достигнет 250 млн. т. Их потребление на душу населения в индустриально развитых странах за последние 20 лет удвоилось, достигнув 85…90 кг, К концу десятилетия как полагают, эта цифра повысится на 45…50 % .
ПВХ – один из наименее стабильных карбоцепных промышленных полимеров. Реакция деструкции ПВХ – дегидрохлорирование начинается уже при температурах выше 100 °С, а при 160 °С реакция протекает очень быстро. В результате термоокисления ПВХ происходят агрегативные и дезагрегативные процессы – сшивание и деструкция.
Деструкция ПВХ сопровождается изменением начальной окраски полимера из-за образования хромофорных группировок и существенным ухудшением физико-механических, диэлектрических и других эксплуатационных характеристик. В результате сшивания происходит превращение линейных макромолекул в разветвленные и, в конечном счете, в сшитые трехмерные структуры; при этом значительно ухудшаются растворимость полимера и его способность к переработке. В случае пластифицированного ПВХ сшивание уменьшает совместимость пластификатора с полимером, увеличивает миграцию пластификатора и необратимо ухудшает эксплуатационные свойства материалов.
Наряду с учетом влияния условий эксплуатации и кратности переработки вторичных полимерных материалов, необходимо оценить рациональное соотношение отходов и свежего сырья в композиции, предназначенной к переработке.
При экструзии изделий из смешанного сырья существует опасность брака из-за разной вязкости расплавов, поэтому предлагается экструдировать первичный и вторичный ПВХ на разных машинах, однако порошкообразный ПВХ практически всегда можно смешивать с вторичным полимером.
Важной характеристикой, определяющей принципиальную возможность вторичной переработки ПВХ отходов (допустимое время переработки, срок службы вторичного материала или изделия), а также необходимость дополнительного усиления стабилизирующей группы, является время термостабильности.
УТИЛИЗАЦИЯ ОТХОДОВ ПОЛИСТИРОЛЬНЫХ ПЛАСТИКОВ
Отходы полистирола накапливаются в виде вышедших из употребления изделий из ПС и его сополимеров (хлебницы, вазы, сырницы, различная посуда, решетки, банки, вешалки, облицовочные листы, детали торгового и лабораторного оборудования и т.д.), а также в виде промышленных (технологических) отходов ПС общего назначения, ударопрочного ПС (УПС) и его сополимеров.
Вторичное использование
-утилизация
сильно загрязненных
-утилизация технологических отходов УПС и АБС-пластика методами литья под давлением, эктрузии и прессования;
-утилизация изношенных изделий;
-утилизация отходов пенополистирола (ППС);
-утилизация смешанных отходов.
Сильно загрязненные
Возможность присоединения к бензольному кольцу полистирола ионогенных групп позволяет получать на его основе иониты. Растворимость полимера в процессе переработки и эксплуатации также не меняется. Поэтому для получения механически прочных ионитов можно применять технологические отходы и изношенные полистирольные изделия, молекулярную массу которых путем термической деструкции доводят до значений, которые требуются по условиям синтеза ионитов (40…50 тыс.). Последующее хлорметилирование полученных продуктов приводит к получению соединений, растворимых в воде, что свидетельствует о возможности использования вторичного полистирольного сырья для получения растворимых полиэлектролитов.
Технологические отходы ПС (так же, как и ПО) по своим физико-механическим и технологическим свойствам не отличаются от первичного сырья. Эти отходы являются возвратными и в основном
используются на тех предприятиях, где они образуются. Их можно добавлять к первичному ПС или использовать в качестве самостоятельного сырья при производстве различных изделий.
Значительное количество технологических отходов (до 50 %) образуется в процессе переработки полистирольных пластиков литьем под давлением, экструзией и вакуум-формованием, возврат которых в технологические процессы переработки позволяет значительно повысить эффективность использования полимерных материалов и создавать безотходные производства в промышленности переработки пластмасс.
АБС-пластики широко применяются в автомобилестроении для изготовления крупных деталей автомобилей, при производстве сантехнического оборудования, труб, товаров народного потребления и т.д.
В связи с увеличением потребления стирольных пластиков растет и количество отходов, использование которых является экономически и экологически целесообразным с учетом возрастания стоимости сырья и уменьшения его ресурсов. Во многих случаях вторичное сырье можно использовать для замены первичных материалов.
Установлено, что при неоднократной переработке АБС полимера в нем протекают два конкурирующих процесса: с одной стороны, частичная деструкция макромолекул, с другой – частичная межмолекулярная сшивка, возрастающие по мере увеличения числа циклов переработки.
При выборе способа переработки экструзионного АБС доказана принципиальная возможность формования изделий методами прямого прессования, экструзии, литья под давлением.
Эффективной технологической стадией переработки отходов АБС является сушка полимера, позволяющая довести содержание влаги в нем до уровня, не превышающего 0,1 %. В этом случая устраняется образование таких дефектов в материале, возникающих от избытка влаги, как чешуйчатая поверхность, серебристость, расслаивание изделий по толщине; от предварительной сушки свойства материала улучшаются на 20…40 %.
Однако способ прямого прессования оказывается малопроизводительным, а экструзия полимера затрудняется из-за его высокой вязкости.
Перспективной представляется переработка технологических отходов АБС полимера методом литья под давлением. При этом для улучшения текучести полимера необходимо вводить технологические добавки. Добавка к полимеру облегчает процесс переработки АБС полимера, так как приводит к увеличению подвижности макромолекул, гибкости полимера и снижению его вязкости.
Полученные по такому способу изделия по своим эксплутационным показателям не уступают изделиям из первичного полимера, а порой даже превосходят их.
Бракованные и изношенные
Значительно более сложная
Блочный ПС необходимо перед повторной переработкой совмещать с ударопрочным ПС (в соотношении 70:30), модифицировать другими способами или подвергать вторичной переработке его сополимера с акрилонитрилом, метилметакрилатом (МС) или тройные сополимеры с МС и акрилонитрилом (МСН). Сополимеры МС и МСН отличаются более высокой стойкостью к атмосферному старению (по сравнению с ударопрочными композициями), что имеет большое значение при последующей переработке. Вторичный ПС можно добавлять к ПЭ.
Для превращения отходов
Отходы ППС можно растворять в стироле, а затем полимеризовать в смеси, содержащей измельченный каучук и другие добавки. Полученные таким способом сополимеры характеризуются достаточно высокой ударной прочностью.
В настоящее время перед
Для повышения качества вторичного полистирольного сырья проводят его модификацию. Для этого необходимы исследования его свойств в процессе термостарения и эксплуатации. Старение ПС пластиков имеет свою специфику, которая наглядно проявляется особенно для ударопрочных материалов, которые помимо ПС содержат каучуки.
При термообработке материалов из ПС (при 100…200 °С) его окисление идет через образование гидропероксидных групп, концентрация которых в начальной стадии окисления быстро растет, с последующим образованием карбонильных и гидроксильных групп.
Гидропероксидные группы инициируют процессы фотоокисления, протекающие при эксплуатации изделий из ПС в условиях воздействия солнечной радиации. Фотодеструкция инициируется также ненасыщенными группами, содержащимися в каучуке. Следствием комбинированного влияния гидропе-роксидных и ненасыщенных групп на ранних стадиях окисления и карбонильных групп на более поздних стадиях является меньшая стойкость к фотоокислительной деструкции изделий из ПС по сравнению с ПО. Наличие ненасыщенных связей в каучуковой составляющей УПС при его нагревании приводит к автоускорению процесса деструкции.
При фотостарении ПС, модифицированного каучуком, разрыв цепи преобладает над образованием поперечных связей, особенно при большом содержании двойных связей, что оказывает значительное влияние на морфологию полимера, его физико-механические и реологические свойства.
Все эти факторы необходимо учитывать при повторной переработке изделий из ПС и УПС.
ПЕРЕРАБОТКА ОТХОДОВ ПОЛИАМИДОВ
Значительное место среди твердых полимерных отходов занимают отходы полиамидов образующиеся в основном при производстве и переработке в изделия волокон (капрон и анид), а также вышедшие из употребления изделия. Количество отходов при производстве и переработке волокна достигает 15 % (из них при производстве – 11…13 %). Так как ПА дорогостоящий материал, обладающий рядом ценных химических и физико-механических свойств рациональное использование его отходов приобретает особую важность.
Многообразие видов вторичного ПА требует создания специальных методов переработки и в то же время открывает широкие возможности для их выбора.
Наиболее стабильными показателями обладают отходы ПА-6,6, что является предпосылкой создания универсальных методов их переработки. Ряд отходов (обрезиненный корд, обрезь, изношенные чулочно-носочные изделия) содержит неполиамидные составляющие и требует специального подхода при переработке. Изношенные изделия загрязнены, причем количество и состав загрязнений определяется условиями эксплуатации изделий, организацией их сбора, хранения и транспортирования.
Основными направлениями переработки и использования отходов ПА можно назвать измельчение, термоформование из расплава, деполимеризацию, переосаждение из раствора, различные методы модификации и текстильную обработку с получением материалов волокнистой структуры. Возможность, целесообразность и эффективность применения тех или иных отходов обусловлены, в первую очередь, их физико-химическими свойствами.
Большое значение имеет молекулярная масса отходов, которая влияет на прочность регенерированных материалов и изделий, а также на технологические свойства вторичного ПА. Значительное влияние на прочность, термостабильность и условия переработки оказывает содержание низкомолекулярных соединений в ПА-6. Наиболее термостабильным в условиях переработки является ПА-6,6.
Для выбора методов и режимов переработки, а также направлений использования отходов важным является изучение термического поведения вторичного ПА. При этом значительную роль могут играть структурно-химические особенности материала и его предыстория.
ВТОРИЧНАЯ ПЕРЕРАБОТКА ОТХОДОВ ПОЛИЭТИЛЕНТЕРЕФТАЛАТА
Переработка лавсановых
За более чем 10 лет массового
потребления напитков в
Взрывной рост производства бутылочных преформ, повышение мировых цен на нефть и, соответственно, на первичный ПЭТФ, повлияли на активное формирование в России в 2000 г. рынка по переработке использованных ПЭТФ бутылок.
Существует несколько методов
переработки использованных