Показатели качества воды и их определение

Автор работы: Пользователь скрыл имя, 05 Декабря 2012 в 19:14, контрольная работа

Краткое описание

В различных аналитических лабораториях нашей страны специалисты ежегодно выполняют не менее 100 млн. анализов качества воды, причем 23 % определений заключается в оценке их органолептических свойств, 21 % — мутности и концентрации взвешенных веществ, 21 % составляет определение общих показателей — жесткости, солесодержания, ХПК, БПК, 29 % — определение неорганических веществ, 4 % — определение отдельных органических веществ. Значительное количество анализов выполняют санитарно-эпидемиологические службы.
Результаты анализов показывают, что в химическом отношении опасной для здоровья являются каждая четвертая проба, в бактериальном — каждая пятая. Необходимо отметить также, что стоимость комплексного анализа качества питьевой воды за рубежом составляет около 1100 долларов.

Вложенные файлы: 1 файл

1-9.doc

— 400.50 Кб (Скачать файл)

2.6. Пенистость

Пенистостью считается способность воды сохранять искусственно созданную пену. Данный показатель может быть использован для качественной оценки присутствия таких веществ, как детергенты (поверхностно-активные вещества) природного и искусственного происхождения и др. Пенистость определяют, в основном, при анализе сточных и загрязненных природных вод.

 

3. Водородный показатель (рН)

Водородный показатель (рН) представляет собой отрицательный логарифм концентрации водородных ионов в растворе: рН= -lg[H+].

Для всего живого в воде (за исключением некоторых кислотоустойчивых бактерий) минимально возможная величина рН=5; дождь, имеющий рН < 5,5, считается кислотным дождем.

В питьевой воде допускается рН 6,0-9,0; в воде водоемов хозяйственно-питьевого  и культурно-бытового водопользования — 6,5—8,5. Величина рН природной воды определятся, как правило, соотношением концентраций гидрокарбонат-анионов и свободного СО2;. Пониженное значение рН характерно для болотных вод за счет повышенного содержания гуминовых и других природных кислот.

Измерение рН при контроле качества природной и питьевой воды проводится практически повсеместно.

4. Щелочность  и кислотность

Щелочность  обусловлена присутствием в воде веществ, содержащих гидроксо-анион, а  также веществ, реагирующих с  сильными кислотами (соляной, серной). К таким соединениям относятся:

1) сильные щелочи (КОН, NaOH) и летучие основания (например, NНз x Н2О), а также анионы, обуславливающие высокую щелочность в результате гидролиза в водном растворе при рН>8,4 (S2-, P043-, SiOз2- и др.);

2) слабые основания  и анионы летучих и нелетучих  слабых кислот (НСОз-; СОз2-, Н2Р04-; НРО42-, СНзСОО-, HS-, анионы гуминовых кислот и др.).

Щелочность пробы воды измеряется в г-экв/л или мг-экв/л и определяется количеством сильной кислоты (обычно используют соляную кислоту с концентрацией 0,05 или 0,1 г-экв/л), израсходованной на нейтрализацию раствора.

При нейтрализации сильных щелочей  до значений рН 8,0-8,2 в качестве индикатора используют фенолфталеин. Определяемая таким образом величина называется свободной щелочностью.

При нейтрализации слабых оснований  и анионов летучих и нелетучих  слабых кислот до значений рН 4,2-4,5 в качестве индикатора используют метиловый оранжевый. Определяемая таким образом величина называется общей щелочностью. При рН 4,5 проба воды имеет нулевую щелочность.

Соединения первой группы из приведенных выше определяются по фенолфталеину, второй — по метилоранжу. Щелочность природных вод в силу их контакта с атмосферным воздухом  и  известняками,  обусловлена,  главным  образом, содержанием в них гидрокарбонатов и карбонатов, которые вносят значительный вклад в минерализацию воды. Мы уделим этим компонентам достаточно внимания, рассмотрев подробно в разделе «Карбонаты и гидрокарбонаты». Соединения первой группы могут содержаться также в сточных и загрязненных поверхностных водах.

Аналогично щелочности, иногда, главным образом при анализе  сточных и технологических вод, определяют кислотность воды.

Кислотность воды обусловлена содержанием в воде веществ, реагирующих с гидроксо-анионами. К таким соединениям относятся:

1) сильные  кислоты: соляная (НСl), азотная (НNОз), серная (H2S04);

2) слабые  кислоты: уксусная (СНзСООН); сернистая  (Н2SОз); угольная (Н2СОз); сероводородная (H2S) и т.п.;

3) катионы  слабых оснований: аммоний (NH4+) катионы органических аммонийных соединений.

Кислотность пробы воды измеряется в г-экв/л или мг-экв/л и определяется количеством сильной щелочи (обычно используют растворы КОН или NaOH с концентрацией 0,05 или 0,1 г-экв/л), израсходованной на нейтрализацию раствора. Аналогично показателю щелочности, различают свободную и общую кислотность. Свободная кислотность определяется при титровании сильных кислот до значений рН 4,3-4,5 в присутствии в качестве индикатора метилового оранжевого. В этом диапазоне оттитровываются НСl, HNOз, H2SO4 НзРO4.

Естественная  кислотность обусловлена содержанием слабых органических кислот природного происхождения (например, гуминовых кислот). Загрязнения, придающие воде повышенную кислотность, возникают при кислотных дождях, при попадании в водоемы не прошедших нейтрализацию сточных вод промышленных предприятий и др.

Общая кислотность обусловлена содержанием  катионов слабых оснований, определяется при титровании до значений рН 8,2-8,4 в присутствии фенолфталеина в качестве индикатора. В этом диапазоне оттитровываются слабые кислоты — органические, угольная, сероводородная, катионы слабых оснований.

5. Минеральный  состав

Минеральный состав воды интересен тем, что отражает результат  взаимодействия воды как физической фазы и среды жизни с другими фазами (средами): твердой, т.е. береговыми и подстилающими, а также почвообразующими минералами и породами; газообразной (с воздушной средой) и содержащейся в ней влагой и минеральными компонентами. Кроме того, минеральный состав воды обусловлен целым рядом протекающих в разных средах физико-химических и физических процессов — растворения и кристаллизации, пептизации и коагуляции, седиментации, испарения и конденсации и др. Большое влияние на минеральный состав воды поверхностных водоемов оказывают протекающие в атмосфере и в других средах химические реакции с участием соединений азота, углерода, кислорода, серы и др.

Ряд показателей качества воды, так или иначе, связан с определением концентрации растворенных в воде различных минеральных веществ. Содержащиеся в воде минеральные соли вносят разный вклад в общее солесодержание, которое может быть рассчитано суммированием концентраций каждой из солей. Пресной считается вода, имеющая общее солесодержание не более 1 г/л. Можно выделить две группы минеральных солей, обычно встречающихся в природных водах.

Основные компоненты минерального состава воды

Компонент минерального состава воды

Предельно-допустимая концентрация (ПДК)15

ГРУППА 1

1. Катионы:

 

Кальций (Са2+)

200 мг/л

Натрий (Na+)

200 мг/л

Магний (Mg2+)

100 мг/л

2. Анионы:

 

Гидрокарбонат (НСОз-)

1000 мг/л

Сульфат (S042-)

500 мг/л

Хлорид (Сl-)

350 мг/л

Карбонат (СОз2-)

100 мг/л

ГРУППА 2

/. Катионы

 

Аммоний (NH4+)

2,5 мг/л

Тяжелые металлы

0,001 ммоль/л

(сумма)

 

Железо общее (сумма Fе2+иFе3+)

0,3мг/л 

2.Анионы

 

Нитрат (NOз-)

45 мг/л

Ортофосфат (РО43-)

3,5 мг/л

Нитрит (N02-)

0,1 мг/л


 

Как видно из табл. 8, основной вклад в минеральный состав вносят соли 1-й группы), и образуют так называемые «главные ионы»), которые определяют в первую очередь. К ним относятся хлориды, карбонаты, гидрокарбонаты, сульфаты. Соответствующими катионами для названных анионов являются калий, натрий, кальций, магний. Соли 2-й группы также необходимо учитывать при оценке качества воды, т.к. на каждую из них установлено значение ПДК, хотя они вносят незначительный вклад в солесодержание природных вод.

5.1. Карбонаты  и гидрокарбонаты

Как отмечалось выше (в разделе «Щелочность  и кислотность), карбонаты и гидрокарбонаты представляют собой компоненты, определяющие природную щелочность воды. Их содержание в воде обусловлено процессами растворения атмосферной С02, взаимодействия воды с находящимися в прилегающих грунтах известняками и, конечно, протекающими в воде жизненными процессами дыхания всех водных организмов.

Определение карбонат - и гидрокарбонат-анионов  является титриметрическим и основано на их реакции с водородными ионами в присутствии фенолфталеина (при определении карбонат-анионов) или метилового оранжевого (при определении гидрокарбонат-анионов) в качестве индикаторов. Используя эти два индикатора, удается наблюдать две точки эквивалентности: в первой точке (рН 8,0-8,2) в присутствии фенолфталеина полностью завершается титрование карбонат-анионов, а во второй (рН 4,1-4,5) — гидрокарбонат-анионов. По результатам титрования можно определить концентрации в анализируемом растворе основных ионных форм, обуславливающих потребление кислоты (гидроксо-, карбонат- и гидрокарбонат-анионов), а также величины свободной и общей щелочности воды, т.к. они находятся в стехиометрической зависимости от содержания гидроксил-, карбонат- и гидрокарбонат-анионов.

Определение карбонат-анионов основано на реакции:

СО32-+H+=HСОз-

Присутствие карбонат-аниона в концентрациях, определяемых аналитически, возможно лишь в водах, рН которых более 8,0-8,2. В случае присутствия в анализируемой воде гидроксо-анионов при определении карбонатов протекает также реакция нейтрализации:

OH-+H+=H2О

Определение гидрокарбонат-анионов основано на реакции:

НСО3-+H+=СO220

Таким образом, при титровании по фенолфталеину в реакции с кислотой участвуют анионы ОН- и СOз2- , а при титровании по метиловому оранжевому — ОН-, СОз2- и НСОз-.

Величина карбонатной жесткости  рассчитывается с учетом эквивалентных масс участвующих в реакциях карбонат- и гидрокарбонат-анионов.

В результате титрования карбоната  и гидрокарбоната, которое может  выполняться как параллельно  в разных пробах, так и последовательно  в одной и той же пробе, для  расчета значений концентраций необходимо определить общее количество кислоты (Vo) в миллилитрах, израсходованной на титрование карбоната (Vк) и гидрокарбоната (Vгк).

 Следует иметь в виду, что  при определении потребления  кислоты на титрование по метилоранжу (Vмо) происходит последовательное титрование и карбонатов, и гидрокарбонатов. По этой причине получаемый объем кислоты Vmo содержит соответствующую долю, обусловленную присутствием в исходной пробе карбонатов, перешедших после реакции с катионом водорода в гидрокарбонаты, и не характеризует полностью концентрацию гидрокарбонатов в исходной пробе. Следовательно, при расчете концентраций основных ионных форм, обуславливающих потребление кислоты, необходимо учесть относительное потребление кислоты при титровании по фенолфталеину (Vф) и метилоранжу (Vмо). Рассмотрим несколько возможных вариантов, сопоставляя величины Vo и vmo.

1. Vф=0. Карбонаты, а также гидроксо-анионы в пробе отсутствуют, и потребление кислоты при титровании по метилоранжу может быть обусловлено только присутствием гидрокарбонатов.

2. Vф?0, причем 2Vф<Vмо. В исходной пробе отсутствуют гидроксо-анионы, но присутствуют и гидрокарбонаты, и карбонаты, причем доля последних эквивалентно оценивается как Vк=2Vф, а гидрокарбонатов — как Vгк=Vмо-2Vф.

3. 2Vф=Vмо. Гидрокарбонаты в исходной пробе отсутствуют, и потребление кислоты обусловлено содержанием практически только карбонатов, которые количественно переходят в гидрокарбонаты. Именно этим объясняется удвоенное, по сравнению с Vф, потребление кислоты Vmo.

4. 2Vф>Vмо. В данном случае в исходной пробе гидрокарбонаты отсутствуют, но присутствуют не только карбонаты, но и другие потребляющие кислоту анионы, а именно — гидроксо-анионы. При этом содержание последних эквивалентно составляет Vон =2Vф - Vмо.  Содержание карбонатов можно рассчитать, составив и решив систему уравнений:


                                 }Vк = 2(Vмо – Vф)


 

5. Vф = Vмо. В исходной пробе отсутствуют и карбонаты, и гидрокарбонаты, и потребление кислоты обусловлено присутствием сильных щелочей, содержащих гидроксо-анионы.

Присутствие свободных  гидроксо-анионов в заметных количествах (случаи 4 и 5) возможно только в сточных  водах.

Результаты  титрования по фенолфталеину и метилоранжу позволяют рассчитать показатель щелочности воды, который численно равен количеству эквивалентов кислоты, израсходованной на титрование пробы объемом 1 л.

При этом потребление кислоты при  титровании по фенолфталеину характеризует свободную щелочность, а по метилоранжу — общую щелочность, которая измеряется в мг-экв/л. Показатель щелочности используется в России, как правило, при исследовании сточных вод. В некоторых других странах (США, Канаде, Швеции и др.) щелочность определяется при оценке качества природных вод и выражается массовой концентрацией в эквиваленте СаСОз.

Следует иметь в виду, что, при анализе сточных и  загрязненных природных вод, получаемые результаты не всегда корректно отражают величины свободной и общей щелочности, т.к. в воде, кроме карбонатов и гидрокарбонатов, могут присутствовать соединения некоторых других групп (см. «Щелочность и кислотность»).

5.2. Сульфаты

Сульфаты, — распространенные компоненты природных  вод. Их присутствие в воде обусловлено растворением некоторых минералов — природных сульфатов (гипс), а также переносом с дождями содержащихся в воздухе сульфатов. Последние образуются при реакциях окисления в атмосфере оксида серы (IV) до оксида серы (VI), образования серной кислоты и ее нейтрализации (полной или частичной):

2SO22=2SOз

SOз+H2O=H2SO4

Наличие сульфатов в  промышленных сточных водах обычно обусловлено технологическими процессами, протекающими с использованием серной кислоты (производство минеральных удобрений, производства химических веществ). Сульфаты в питьевой воде не оказывают токсического эффекта для человека, однако ухудшают вкус воды: ощущение вкуса сульфатов возникает при их концентрации 250-400 мг/л. Сульфаты могут вызывать отложение осадков в трубопроводах при смешении двух вод с разным минеральным составом, например, сульфатных и кальциевых (в осадок выпадает CaS04).

Информация о работе Показатели качества воды и их определение