Принципы биологической очистки сточных вод

Автор работы: Пользователь скрыл имя, 29 Ноября 2012 в 20:26, реферат

Краткое описание

В работе приведено краткое описание процесса очистки стоков (промышленных и бытовых) биологическим методом

Содержание

Введение………………………………………………………………3

Классификация сточных вод
в промышленном водоснабжении…………………………………..6

Очистка сточных вод…………………………………………………7

Принципы очистки сточных вод в аэртенках………………………8

Фазы развития колонии микроорганизмов………………………….10

Процесс полной трехстадийной биологической очистки…………..13

Биологическая очистка высококонцентрированных
производственных сточных вод в анаэробных условиях
с доочисткой аэробным окислением…………………………………15

Классификация аэротенков……………………………...……………16


Интенсификация биологической очистки
сточных вод в аэротенках……………………………………………..18

Комбинированные аэротенки…………………………………………21

Вспомогательные средства очистки сточных вод…………………...22



Утилизация осадков сточных вод и активного ила…………………23


Заключение ……………………………………………………………26

Список использованной литературы…………………………………27

Вложенные файлы: 1 файл

Реферат.Принципы биологической очистки сточных вод.doc

— 906.00 Кб (Скачать файл)

Окислительная мощность сооружений весьма различна: от нескольких сот граммов (биопруды) до нескольких килограммов ( 5.47) (аэротенки с высокой дозой активного ила).

 

Аэротенк — резервуар прямоугольного сечения, по которому протекает сточная вода смешанная с активным илом, где происходит биохимическая очистка сточной воды. Воздух, вводимый с помощью пневматических или механических аэраторов — аэрационной системы, перемешивает обрабатываемую сточную воду с активным илом и насыщает её кислородом, необходимым для жизнедеятельности бактерий.

В аэрационных сооружениях микробиальная  масса пребывает во взвешенном в  жидкости состоянии в виде отдельных хлопьев, представляющих собой скопления микроорганизмов, простейших и более высокоорганизованных представителей фауны. Этот биоценоз организмов, развивающихся в аэробных условиях на органических загрязнениях, содержащихся в сточной воде, получил название активного ила. Доминирующая роль в нем принадлежит различным группам бактерий – одноклеточным подвижным микроорганизмам с достаточно прочной внешней мембраной, способным не только извлекать из воды, растворенные и взвешенные в ней органические вещества, но и самоорганизовываться в колонии — хлопья, легко отделимые затем от очищенной воды путем отстаивания или флотации.

 

Хлопьеобразующая способность  активного ила зависит главным  образом от наличия питательных  веществ: при слишком высоком  их содержании происходят рассеивание колоний и появление нитчатых форм микроорганизмов; при их недостатке, хотя нитчатые формы микроорганизмов практически отсутствуют, размеры хлопьев ила уменьшаются и ухудшаются его седиментационные свойства. Бактерии имеют такую высокую скорость воспроизводства, что в условиях избыточного питания и отсутствия внешних сдерживающих их рост факторов 1 мг бактерий за 1 сут может привести к образованию десятков тонн живой микробиальной массы. Собственно на этой способности к быстрому размножению и, следовательно, высокой скорости потребления питательных веществ и основано использование биологических методов очистки сточных вод. 
 
Роль других микроорганизмов и простейших в активном иле заключается в поддержании определенного равновесия видового и количественного состава ила, хорошо приспособленного к тем или иным условиям, господствующим в аэрационном сооружении, а также полноты протекания биохимических превращений, которым подвергаются органические соединения. 
 
По современным представлениям, активный ил — это скопление микроорганизмов, в которых клетки окутаны густой «паутиной» растворимых или слаборастворимых внеклеточных полимерных образований, состоящих из полисахаридов, протеинов, рибонуклеиновых и дезоксинуклеиновых кислот (РНК, ДНК), которые содержат много «ключевых» функциональных групп (карбоксильные, гидроксильные, сульфогидрильные и др.), ведущих себя как анионные связующие площадки. Биохимическое и биофизическое взаимодействие между хлопьями ила и загрязнениями позволяет довольно быстро извлекать из воды и нерастворенные загрязнения за счет сорбции их активном илом, хотя они и не успевают гидролизоваться клеточным веществом. Следует отметить, что суммарная поверхность микроорганизмов достигает 100 мна 1 г сухого вещества ила, что в свою очередь объясняет огромную сорбционную способность ила и потребность в эффективном перемешивании содержимого бассейна. Однако основная масса изъятых таким образом мелкодисперсных и коллоидных загрязнений, не задержанных в первичных отстойниках, не гидролизуется и, следовательно, не окисляется активным илом, что приводит лишь к весовому увеличению массы ила в аэрационном сооружении.

Фазы развития колонии микроорганизмов

С инженерной точки зрения определяющими  для технологического и конструктивного  оформления процесса биологической очистки будут являться скорости изъятия загрязнений из очищаемой воды, т.е. собственно процесса очистки воды и скорости биохимического разложения изымаемых загрязнений. В этой связи представляют интерес основные закономерности развития колонии микроорганизмов, вводимой в контакт с жидкостью, содержащей питательные вещества, при достаточном обеспечении ее растворенным кислородом. В этом развитии можно выделить следующие фазы: 
 
I – лаг-фазу, или фазу адаптации, которая наблюдается сразу после введения микробиальной культуры в контакт с питательной средой, и в которой практически не происходит прироста биомассы. Длительность этой фазы зависит как от природы органических веществ и степени адаптированности микроорганизмов к ним, так и от условий, в которые вносится микробиальная масса; 
 
II – фазу экспоненциального роста микроорганизмов, в которой избыток питательных веществ и отсутствие продуктов обмена веществ способствуют поддержанию максимально возможной в данных условиях скорости размножения клеток, определяемой лишь биологической сущностью процесса их воспроизводства; 
 
III – фазу замедленного роста, в которой скорость роста биомассы начинает все более сдерживаться по мере истощения питательных веществ и накопления продуктов метаболизма в культуральной среде; 
 
IV – фазу прекращения роста, в которой наблюдается практически стационарное состояние в количестве биомассы, свидетельствующее о равновесии между наличием питательных веществ и накопленной биологической массой; 
 
V – фазу эндогенного дыхания (или фазу самоокисления), в которой из-за недостатка питания начинаются отмирание и распад клеток, ведущие к снижению общего количества биомассы в биологическом реакторе. 
 
Рисунок 1. Зависимость прироста биомассы в аэробных условиях от концентрации питательных веществ. 
Из рисунка 4 видно, что отмеченным фазам роста микробиальной массы соответствует и динамика изменения концентрации питательных веществ, выраженных через БПК, и, следовательно, можно сделать следующие весьма важные для технической реализации процесса заключения: 
 
• при биологической очистке значительная часть загрязнений, содержащихся в сточных водах, трансформируется в биологическую массу или, иными словами, растворенные и инертные взвешенные органические вещества в результате метаболической активности микроорганизмов и сорбционной способности активного ила превращаются в биологическую массу, сравнительно легко отделимую от очищенной воды; 
 
• длительность изъятия и окисления, содержащихся в сточной воде органических загрязнений будет тем короче, чем дольше масса микроорганизмов будет в контакте с ними; 
 
• при падении содержания органических веществ в очищаемой жидкости ниже определенного предела жизнедеятельность микроорганизмов продолжается, но уже либо за счет накопленных питательных веществ, либо за счет их собственной массы, т.е. отмирания и окисления микроорганизмов со снижением общей их массы (процесс самоокисления). 
 
В большинстве применяемых в настоящее время систем очистки в аэротенках процесс отделения активного ила осуществляется гравитационным путем, т.е. отстаиванием, при котором активный ил осаждается на дно отстойного сооружения и несколько уплотняется, после чего может быть возвращен в аэрационное сооружение. Если ил будет плохо осаждаться в отстойных сооружениях, то его вынос с очищенной водой ухудшает качество очищенной воды, а в некоторых случаях не позволяет поддерживать в аэрационном сооружении требуемую дозу активного ила. Иными словами, если попытаться установить произвольно высокую концентрацию ила в аэрационном сооружении, то при переходе иловой смеси в сооружение для отделения ила путем его осаждения последний будет постепенно выноситься вместе с очищенной водой, и в аэрационном сооружении установится концентрация активного ила, соответствующая иловому индексу для данных условий. Хорошо оседающий ил имеет иловый индекс от 60 – 90 до 120 – 150 мл/г в зависимости от технологического режима работы аэрационных сооружений и состава сточных вод. Как перегрузка, так и недогрузка активного ила по загрязнениям приводят к резкому увеличению илового индекса, названному «вспуханием» ила, и повышенному выносу его с очищенной сточной водой.

 

Процесс полной трехстадийной  биологической очистки.

 

Процесс полной биологической очистки  протекает в три стадии. На первой стадии, сразу же после смешения сточных вод с активным илом, на его поверхности происходят адсорбция  загрязняющих веществ и их коагуляция (укрупнение частиц несущих органические вещества).

 

На первой стадии очистки загрязняющие вещества в сточных водах удаляются благодаря механическому изъятию их активным илом из воды и началу процесса биоокисления наиболее легкоразлагающейся органики. Высокое содержание поступающих загрязняющих веществ способствует на первой стадии высокой кислородопоглащаемости, что приводит к практически полному потребления кислорода в зонах поступления

сточных вод в аэротенках. На первой стадии за 0.5-2.0 часа содержание органических загрязняющих веществ снижается на 50-60%.

На второй стадии полной биологической очистки продолжается биосорбция загрязняющих веществ и идёт их активное окисление экзоферментами (ферментами, выделяемыми активным илом в окружающую среду). Благодаря снизившейся концентрации загрязняющих веществ, начинает восстанавливаться активность ила, которая была подавлена к концу первой стадии очистки. Скорость потребления кислорода на этой стадии меньше, чем в начале процесса, и в воде накапливается растворённый кислород. В случае благополучия второй стадии экзоферментами окисляется до 75% органических загрязняющих веществ. Продолжительность этой стадии различна в зависимости от состава очищаемых сточных вод и составляет от 2.0 до 4.0 часов.

 

На третьей стадии очистки происходит окисление загрязняющих веществ эндоферментами (внутри клетки), доокисление сложноокисляемых соединений, превращение азота аммонийных солей в нитриты и нитраты, регенерация активного ила. Именно на этой стадии (стадии внутриклеточного питания активного ила) происходит образование полисахаридного геля, выделяемого бактериальными клетками. Скорость потребления кислорода вновь возрастает. Общая продолжительность процесса в аэротенках составляет 6-8 часов для бытовых и может увеличиваться до 10-20 и более часов при совместной очистке бытовых и производственных сточных вод. Продолжительность третьей стадии, таким образом, составляет от 4-6 часов при очистке бытовых сточных вод и может удлиняться до 15 часов.

 

Благополучие фазы эндогенного  питания определяется величиной нагрузки, возрастом активного ила и временем пребывания его в аэротенках. Увеличение возраста активного ила, времени его пребывания в системе очистки, падение удельной нагрузки на него продлевает фазу эндогенного питания и создаёт благоприятный режим для её протекания, что способствует активному гелеобразованию, укрупнению хлопьев активного ила, улучшению его флокулирующих свойств. Внезапное увеличение нагрузки, сокращение возраста, токсические вещества, присутствующие в поступающей на очистку воде, оказывают подавляющее воздействие на процесс ферментативного окисления в целом и на фазу эндогенного питания. Таким образом, флокуляция хлопьев, а, следовательно, эффективность очистки, зависит от характеристик поступающих сточных вод, условий введения технологического процесса очистки и от действия гидродинамических сил в аэротенке.

 

 

 

 

 

 

Биологическая очистка высококонцентрированных производственных сточных вод в анаэробных условиях с доочисткой аэробным окислением

 

При высоких концентрациях органических загрязнений в производственных сточных водах (БПКлолн=6…30 г/л) очистка обычных сооружений биологической очистки при аэробных условиях становится экономически неприемлемой, так как необходимо производить предварительное снижение БПК этих вод путем разбавления до допустимых пределов по БПКполн=1 000 мг/л, что вызывает увеличение объемов очистных сооружений и, следовательно, дополнительные затраты на их строительство.

Снижение БПК высококонцентрированных  производственных сточных вод целесообразно осуществлять путем анаэробного сбраживания в метаитенках таких же типов и конструкций, как для сбраживания осадков сточных вод.

Для того чтобы можно было надежно  очищать концентрированные сточные  воды, содержащие углеводы в количестве 10 г/л и выше,на основании изучения последовательности микробиальных процессов разработан новый метод метанового брожения в двух и более физиологических ступенях, в которых для бактерий отдельных фаз, в особенности для бактерий метановых, сохраняют оптимальные условия.

Принцип этого метода состоит в  том, что метановое брожение происходит в двух или нескольких отдельных  резервуарах (в зависимости от состава  сточных вод). В первом резервуаре создаются условия, благоприятные  для гидролиза высокомолекулярных органических соединений и образования летучих органических кислот, и таким образом существенно сокращается продолжительность образования летучих кислот. Во втором резервуаре со специфическим составом активных форм метановых бактерий происходит обработка сточных вод, в которых уже прошла первая фаза брожения, т. Е. образовались летучие кислоты и рН стало равным 7,2. В результате здесь сохраняются оптимальные условия и для второго типа микробиального сообщества и весь процесс благодаря этому значительно ускоряется.

Этот способ сбраживания сточных вод в двух физиологических ступенях отличается постоянством и в том случае, если концентрация сточных вод колеблется.

Эффективность этого метода очистки  по всем показателям достигает 80%, концентрация органических загрязнений снижается в 10—20 раз. Высокая концентрация органических веществ обусловливает образование большого количества газа, который используется для подогревания метантенков до оптимальной для жизнедеятельности мезофильных бактерий температуры 35—37° С. На установках средней производительности полученного таким образом тепла хватает на подогрев метантенков; добавлять тепло приходится только в исключительных случаях (в начале работы установки).

Анаэробная обработка применима  при очистке сточных вод предприятий  пищевой промышленности (пивоваренных, дрожжевых, сахарных, винокуренных, консервных заводов и мясокомбинатов), предприятий фармацевтической промышленности, в частности фабрик, изготовляющих пенициллин и оптимицин, а также фабрик первичной обработки шерсти, заводов синтетических жирных кислот, производства капролактама; этим способом можно очищать сильноконцентрированные сточные воды, содержащие синтетические поверхностно-активные вещества. Сбраживанию, как правило, целесообразно подвергать только наиболее концентрированную часть сточных вод (от отдельных производственных процессов), а не общий сток предприятия.

 

Классификация аэротенков

 
По существующим представлениям «аэротенк  представляет собой резервуар, в  котором медленно протекает смесь  активного ила и очищенной  сточной жидкости». Рассмотрим классификацию аэротенков по основным признакам: 
 
по гидродинамическому режиму – аэротенки–вытеснители, аэротенки–смесители и аэротенки с рассредоточенным впуском сточной жидкости (аэротенки промежуточного типа); 
 
по способу регенерирования активного ила – аэротенки с отдельной регенерацией и аэротенки без отдельной регенерации активного ила; 
 
по нагрузкам на активный ил – высоконагружаемые (аэротенки на неполную очистку), обычные и низконагружаемые (аэротенки продленной аэрации); 
 
по количеству ступеней очистки – одно-, двух- и многоступенчатые аэротенки. При этом под ступенью очистки следует понимать часть общей биохимической системы, в которой поддерживается специфическая культура активного ила; 
 
по режиму ввода сточной жидкости – проточные, полупроточные, с переменным рабочим уровнем и контактные. 

 
Конструкции применяемых аэротенков подразделяются по способу подачи сточных  вод и их потоку на три основных типа: 

 
                 вытеснители (рисунок 2) с «поршневым» потоком сточных вод;

 
                  смесители с рассредоточенной или центральной (рисунок 3) подачей и выпуском сточных вод; 
 
                 аэротенки промежуточного типа (рисунок 4). 
 
 
 
Рисунок 2. Схема движения сточных вод в четырехкоридорном аэротенке-вытеснителе. 
 
 
Рисунок 3. Схема аэротенка-смесителя с центральным подводом сточных вод и ила в аэрационную зону.

 

 
 
Рисунок 4. Схема движения сточных  вод в аэротенке промежуточного типа: смесителе-вытеснителе. 
 
 
В основу схем работы аэротенков с регенераторами положены представления о стадийном характере процесса биохимической очистки сточных вод. Согласно данной концепции, первая стадия процесса – адсорбция или изъятие органических загрязнений активным илом – происходит более быстро, чем последующее их окисление. Поэтому обе стадии процесса осуществляются раздельно: в аэротенке происходит адсорбция и минерализация наиболее легко окисляющихся веществ, в регенераторе – завершение окисления сорбированных веществ и восстановление начальной активности ила. 
 
Аэротенки с регенераторами в настоящее время применяются на многих городских станциях аэрации, рассчитанных на полную биохимическую очистку, а также на предприятиях различных отраслей промышленности.

Информация о работе Принципы биологической очистки сточных вод