Расчет сооружений электрохимической очистки сточных вод (ЭФКу)

Автор работы: Пользователь скрыл имя, 07 Апреля 2014 в 05:19, курсовая работа

Краткое описание

Охрана окружающей природной среды и рациональное использование природных ресурсов приобретают в наши дни исключительное значение. Основным направлением в решении проблемы рационального использования водных ресурсов является максимальное сокращение отходов, потерь и готовой продукции, сбрасываемых с производственными сточными водами в канализацию и максимальное сокращение количества сточных вод.

Содержание

ВВЕДЕНИЕ

1 Характеристика объекта

2 Литературный обзор метода очистки

3 Расчет резервуара-усреднителя

4 Расчет осветлителя

5 Расчет сооружений электрохимической очистки сточных вод (ЭФКу)

6 Фильтр доочистки

7 Расчет баланса загрязнений 28

8 Расчет сооружений для обработки осадков

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАНЫХ ИСТОЧНИКОВ

Вложенные файлы: 1 файл

пояснительная.doc

— 548.50 Кб (Скачать файл)

Мембранный метод очистки сточных вод основан на способности мембран задерживать загрязнения, содержащиеся в сточных водах, за счет создаваемого осмотического давления. ВНИИ жировой промышленности  проведены исследования по очистке жиросодержащих сточных вод методом обратного осмоса. На основе полученных результатов спроектированная установка, где в качестве мембран используются керамические трубки диаметром 20мм и длиной 150 мм с различной пористостью (0.47, 1.15, 1.12, 1.30 мкм). Испытания этой установки при давлении 3,0 МПа и пористости материала 0,47 мкм дали положительные результаты. Эффект очистки составлял более 95% микроорганизмы более чем на 98% задержались на мембране, что равносильно обеззараживанием жидким хлором.

Наиболее полно изучен флотационный способ очистки сточных вод, содержащих жир, масло, нефть, нефтепродукты. Метод флотации основан на извлечении взвешенных или коллоидных частиц из жидкости в результате их прилипания к пузырькам воздуха, диспергированного или образующегося в этой жидкости.

Прикрепившиеся к пузырькам частицы всплывают на поверхность, образуя пенный слой с более высокой концентрацией частиц, чем в исходной воде.

Сущность производственных флотационных процессов заключается в том, что искусственно созданный в жидкой среде восходящий поток газовых пузырьков захватывает и уносит с собой к поверхности жидкости частицы жира, взвеси, образуя слой пены. Пена удаляется различными устройствами с поверхности очищаемой жидкости на дальнейшую обработку.

В зависимости от способа насыщения сточной жидкости различают следующие методы флотации: импеллерную, напорную, электрофлотацию.

Способ импеллерной флотации осуществляют с помощью импеллерного типа машин, которые представляют собой квадратный резервуар, в нижней части которого расположена турбинка - импеллер, соединенная приводом с электродвигателем находящимся над флотационной машиной.

Комплекс очистных сооружений с импелерными флотомашинами состоит из двух групп сооружений: для очистки сточной жидкости и обработки изъятых в виде пены загрязнений (пенного продукта). Импеллерные машины устанавливаются последовательно от 4 до 5 флотационных машин по две камеры в каждой. Производительность их рассчитывается на 10-минутную продолжительность флотации. Эффект извлечения жиров и взвесей при таком режиме работы составляет 62-64%. При увеличении продолжительности флотации до 20-минут эффект извлечения жиров и взвесей может составить 68-77 %.

Однако увеличение продолжительности флотации сопровождается ростом объемов декантата, загрязненного жирами и взвесями, которые необходимо направлять на повторную очистку. Это снижает экономичность способа.

Несмотря на хорошую аэрацию, возможности импеллерной флотации ограничены, так как размер основной массы пузырьков газа, получаемых в машинах, относительно велик: 0,5-1,2 мм. Кроме того, они энергоемки - на 1 м3 очищаемой сточной воды затрачивается до 2,6 кВт/ч электроэнергии. К числу недостатков установок с импеллерной флотацией следует отнести также невозможность использования реагентов. Весьма существенный недостаток - образование больших количеств флотоконцентрата за счет перелива воды.

Известен метод пневматической флотации, которую осуществляют вводя под напором воздух в жидкость и диспергируя его с помощью пористых материалов. Разновидностью является пенная сепарация, отличающаяся от других видов флотации тем, что очищаемая вода подается во флотатор на сформированный в результате барботирования воздуха пенный слой, т.е. очищаемая жидкость движется навстречу потоку тонко диспергированного воздуха, который, создавая пенный слой, обеспечивает необходимую продолжительность пребывания частиц загрязнений в пене. Попадая в пенный слой, частицы загрязнений закрепляются не только на поверхности пузырьков воздуха, но и на поверхности гидрофобных частиц, которые ранее закрепились на воздушных пузырьках. В результате создается развитая поверхность пены, которая позволяет сократить продолжительность флотации. В машинах пенной сепарации в качестве аэраторов используют специальные перфорированные резиновые трубки, собранные в кассеты.

Проведенные исследования показали, что этот метод дает эффект очистки по жирам 90-95%, по взвешенным веществам 90-96%.

К недостаткам метода можно отнести то, что воздух, поступающий во флотационные камеры плохо диспергирует, в результате чего образуются воздушные пузырьки повышенной крупности, что отрицательно сказывается на протекании процесса.

Метод напорной флотации заключается в насыщении сточной воды газом (воздухом) под избыточным давлением, с последующим снижением давления до атмосферного. При этом происходит интенсивная десорбция газа и выделение большого количества мельчайших пузырьков. Пузырьки с прилипшими к ним частичками жира и взвеси всплывают, что позволяет значительно ускорить процесс выделения жировых веществ из сточных вод.

Однако, как показал опыт промышленной эксплуатации таких установок, эффект очистки жиросодержащих сточных вод не превышает 50-60% .

К основным конструктивным недостаткам относятся использование напорного резервуара барботажного типа, не обеспечивающего достаточного насыщения сточных вод воздухом; распределение сточной воды во флотаторе с помощью перфорированных труб, которые быстро забиваются жиром и взвешенными веществами.

В Курском институте экологической безопасности выпускается ряд высокоэффективных модульных установок напорной флотации с 2-х и 3-х ступенчатой очисткой с производительностью до 20 м3/ч в сочетании с самотечными и напорными фильтрами и адсорберами для извлечения из сточных вод нефтепродуктов, масел, жиров, взвешенных веществ, ПАВ и т.д.

Установки малоэнергоемкие, обеспечивают оборотное водоснабжение, не требуют много места и больших капитальных вложений, эффективно работают как локальные установки, так и в составе очистных сооружений.

Разработанная и испытанная в условиях опытно-промышленного производства новая конструкция флотатора способна обеспечить более надежную и стабильную работу очистной установки. Эффективность работы такой установки напорной флотации составляет по жирам - 86-88%, по взвешенным веществам до 95%, по ХПК около 60%.

Процесс выделения из жидкости взвешенных частиц путем их флотации газовыми пузырьками, получаемыми при электролизе воды, называют электрофлотацией. В процессе электролиза выделяются электролизные газы: водород, кислород, азот, хлор. Основная часть газов - водород. Преимущество электрофлотации заключается в том, что обеспечивается генерация газовых пузырьков весьма тонкой дисперсности - от 10 до 200 мкм, причем на долю пузырьков от 25 до 40 мкм приходится более 50%. Поверхность пузырьков малого размера обладает большой свободной поверхностной энергией, создает более благоприятный гидрологический режим в зоне флотации, что увеличивает эффект отчистки.

Положительным также является и то, что при электрофлотации можно в широком диапазоне изменять дисперсность и гранулометрический состав пузырьков путем изменения величины и плотности тока, что имеет большое значение в достижении оптимальных условий для извлечения жировых частиц любых размеров. Наличие солей в сточной воде обеспечивает необходимую электропроводность воды и делает процесс экономически целесообразным.

Исследования, выполненные  с целью выяснения возможности применения электрофлотации для обезжиривания сточных вод, показали, что на эффективность процесса электрофлотации влияют: величина плотности тока на электродах, продолжительность обработки, материал и способы выполнения анода и катода, температура сточной жидкости и другие факторы.

Полученные экспериментальные данные свидетельствуют о том, что оптимальная плотность тока при электрофлотации жировых загрязнении лежит в интервале от 100 до 500 А/м2. Повышение плотности тока сверх оптимального значения снижает эффект обезжиривания, что объясняется образованием турбулентных потоков в обрабатываемой жидкости в результате бурного выделения газовых пузырьков. Возникающие потоки ухудшают процесс флотации частиц жировых загрязнений и препятствуют закреплению их в пене.

При исследовании влияния продолжительности обработки было выявлено, что скорость извлечения жировых загрязнений имеет наибольшее значение в первые 5 - 10 минут работы электрофлотационной установки, дальнейшая обработка практически мало влияет на относительную эффективность обезжиривания сточных вод.

Исследования влияния высоты слоя обрабатываемой сточной воды показало, что при высоте слоя 80 - 100 см. эффект обезжиривания составляет около 90%. С увеличением высоты слоя обрабатываемой жидкости эффект выделения жира снижается. От расстояния между электродами зависит величина напряжения, а также потребляемая мощность и, следовательно, расход электроэнергии на обработку сточной воды.

С увеличением расстояния между электродами для получения одной и той же плотности тока величина подводимого напряжения должна изменяться в сторону увеличения. Следовательно, расстояние между электродами должно быть минимальным (6 - 8 мм.) и регламентироваться только конструктивными возможностями.

Как показали исследования  при подборе оптимальных параметров процесса электрофлотационной обработки эффект отчистки жиросодержащих сточных вод достигает 98% при начальной концентрации жировых загрязнений 4000 - 4500 мг/л. Высокий эффект отчистки в сочетании с простой изготовления электрофлотационных аппаратов и несложностью их обслуживания, а также возможностью регулирования степени отчистки жидкости в зависимости от фазово-дисперсного состояния загрязнений путем изменений только одного параметра (плотности тока) технологического процесса, отсутствие вращающихся частей в рабочей зоне аппаратов, гарантирующие надежность работы и исключающее перемешивание обрабатываемой жидкости и измельчения содержащихся в ней взвешенных частиц, делает метод электрофлотационной отчистки приоритетным в сравнении с другими методами флотации для обработки концентрированных сточных вод масложировой промышленности.

Известен метод электрокоагуляции для отчистки промышленных сточных вод, основанных на электролизе с исспользованием металлических (стальных или алюминиевых) анодов, подвергающихся электролитическому растворению. В следствии растворения анодов вода обогащается соответствующими ионами, образующими затем в нейтральной или слабощелочной среде гидроксид алюминия или гидроксид железа, которых под воздействием растворенного в воде кислорода переход в гидроксид железа. В результате осуществляется процесс коагуляции аналогичный обработке воды соответствующими солями алюминия или железа. Однако, в отличие от применения солевых коагулянтов при электрокоагуляции вода не обогащается сульфатами  или хлоридами, содержание которых в отчищенной воде лимитируется как при сбросе ее в водоемы, так и при повторном использовании в системах промышленного водоснабжения.

 

3 Расчет резервуара-усреднителя

Опыт эксплуатации промышленных очистных сооружений показывает, что эффективность их работы повышается при равномерной нагрузке на аппараты, что особенно целесообразно при использовании физико-химических методов очистки. В результате этого достигаются более высокие качественные показатели очищенной воды и продлевается срок службы очистных сооружений.

Необходимый объем усреднителя определяется исходя из графика притока сточных вод в течение определенного периода времени. Для молочного комбината коэффициент часовой неравномерности отведения производственных сточных вод Кн = 1,8. Режим распределения сточных вод по часам смены для коэффициента неравномерности Кн = 1,8 (таблица 1).

Равномерная подача сточных вод составляет 21,875 м3/час. Принимая во внимание недостаток площади под строительство отдельно строящегося резервуара-усреднителя, а также небольшой суточный расход сточных вод, равный 350 м3/сут, резервуар-усреднитель совмещаем с насосной станцией, подающей стоки на очистку. Принимаем резервуар-усреднитель W= 17,475 м3. Габаритные размеры усреднителя при рабочей глубине Н= 4 м, составят L × В = (2 × 2) м.

 

 

 

Таблица 1- Определение емкости резервуара-усреднителя

Часы

Приток

Откачка

Остаток

%

м3

%

м3

м3

8-9

11,243

39,35

6,25

21,875

17,475

9-10

5,917

20,71

6,25

21,875

16,31

10-11

5,917

20,71

6,25

21,875

15,145

11-12

5,917

20,71

6,25

21,875

13,98

12-13

5,917

20,71

6,25

21,875

12,815

13-14

5,917

20,71

6,25

21,875

11,65

14-15

5,917

20,71

6,25

21,875

10,485

15-16

5,917

20,71

6,25

21,875

9,32

16-17

5,917

20,71

6,25

21,875

8,155

17-18

5,917

20,71

6,25

21,875

6,99

18-19

5,917

20,71

6,25

21,875

5,825

19-20

5,917

20,71

6,25

21,875

4,66

20-21

5,917

20,71

6,25

21,875

3,495

21-22

5,917

20,71

6,25

21,875

2,33

22-23

5,917

20,71

6,25

21,875

1,165

23-24

5,917

20,71

6,25

21,875

0,0

итого

100

350

100

350

 

Информация о работе Расчет сооружений электрохимической очистки сточных вод (ЭФКу)