Роль биотехнологии в решении глобальных проблем

Автор работы: Пользователь скрыл имя, 20 Мая 2013 в 21:10, курсовая работа

Краткое описание

Биотехнологические разработки играют важную роль в добы¬че и переработке полезных ископаемых, получении различных препаратов и создании новой аппаратуры для аналитических целей.

Содержание

ВВЕДЕНИЕ 2
1 Биотехнология и сельское хозяйство 5
1.1Биотехнология и растениеводство 5
1.2Биотехнология и животноводство. 12
2 Технологическая биоэнергетика 13
Получение этанола как топлива. 13
Получение метана и других углеводородов. 15
Получение водорода как топлива будущего. 16
Пути повышения эффективности фотосинтетических систем. 17
Биотопливные элементы. 18
3 Биотехнология и медицина 19
Антибиотики. 19
Гормоны. 22
Интерфероны, интерлейкины, факторы крови. 23
Моноклокальные антитела и ДНК-или РНК-пробы. 25
Рекомбинантные вакцины и вакцины-антигены. 26
Ферменты медицинского назначения. 27
4 Биотехнология и пищевая промышленность 28
5 Биогеотехнология 31
ЗАКЛЮЧЕНИЕ 33
Список используемой литературы. 36

Вложенные файлы: 1 файл

КУРСОВАЯ биотехнол.doc

— 269.50 Кб (Скачать файл)

    Значителен вклад биотехнологии и в промышленное производство непептидных гормонов, в первую очередь стероидов. Методы микробиологической трансформации позволили резко сократить число этапов химического синтеза кортизона, гормона надпочечников, применяемого для лечения ревматоидного артрита. При производстве стероидных гормонов широко используют иммобилизованные микробные клетки, например Arthrobacter globiformis, для синтеза преднизолона из гидрокортизона. Имеются разработки по получению гормона щитовидной железы тироксина из микроводорослей.

    3.3 Интерфероны, интерлейкины, факторы крови

 

  Интерфероны  выделяются клетками человека и животных в ответ на инфици-рование вирусами. Они обладают антивирусной активностью. Механизм действия интерферонов до конца не выяснен. Предполагается, в частности, что Интерфероны препятствуют проникновению вирусных частиц в клетку. Интерфероны стимулируют деятельность иммунной системы и препятствуют размножению клеток раковых опухолей. Все аспекты действия интерферонов важны с точки зрения их терапевтического применения.

    Различают интерфероны, образуемые  лейкоцитами, фибробластами соединительной ткани, Т-лимфоцитами и эпителиальными клетками. Наибольшее значение имеют первые три группы. Интерфероны состоят из 146—166 аминокислотных остатков связаны с остатками сахаров (гликозилированы). До введения методов генетической инженерии интерфероны получали из донорской крови — до 1 мкг неочищенного интерферона из 1 л крови, т. е. примерно одну дозу для инъекции.

    В настоящее время интерфероны успешно получают с применением генноинженерных штаммов Е. coli, дрожжей, культивируемых клеток насекомых (Drosophil) и млекопитающих. Генно-инженерные интерфероны могут быть очищены с использованием моноклональных антител. В случае у- и р-интерферонов предпочтительно применение эукариотических продуцентов, так как прокариоты не гликозилируют белки. Некоторые фирмы, например Bioferon (ФРГ), используют не генноинженерные мутанты, а культивируемые in vitro фибропласты человека.

    Интерфероны используются для лечения болезней, вызываемых вирусами герпеса, бешенства, гепатитов, цитомегаловиру-сом, вирусом, вызывающим опасное поражение сердца, а также для профилактики вирусных инфекций. Вдыхание аэрозоля интерферонов позволяет предупредить развитие острых респираторных заболеваний. Несколько курьезной проблемой является то что интерфероны сами могут вызывать у пациентов простудные симптомы (насморк, повышение температуры и т.д.). Проблема побочного действия стоит особенно остро при длительном терапевтическом применении интерферонов, необходимом для лечения злокачественных опухолей.

    Интерфероны оказывают лечебное воздействие на организм больных раком груди, кожи, гортани, легких, мозга, рассеянной миеломе и саркоме Капоци — два последних заболевания характерны для лиц, страдающих приобретенными иммунодефицитами. Интерфероны полезны также при лечении рассеянного склероза.

    Методы генетической инженерии позволяют получать модифицированные Интерфероны. Антивирусная активность интерферонов варьирует при аминокислотных заменах (J. Werenne, 1983). Американская компания Cetus Corporation производит интерферон, в аминокислотной последовательности которого цистеин в положении 17 замещен на серии. Это приводит к повышению терапевтической активности препарата, так как предотвращает наблюдаемое in vitro формирование неактивного димера-интерферона за счет дисульфидных связей между остатками цистеина. Определенные надежды возлагают на модификацию интерферонов путем получения гибридных молекул (Е. Д. Свердлов, 1984).

    Интерлейкины-сравнительно короткие (около 150 аминокислотных остатков) полипептиды, участвующие в организации иммунного ответа. Интерлейкин-1, образующийся определенной группой лейкоцитов крови — макрофагами, в ответ на введение антигена стимулирует размножение (пролиферацию) Т-хелперов (субпопуляции Т-лимфоцитов), продуцирующих, в свою очередь, интерлейкин-2. Последний вызывает пролиферацию различных субпопуляций Т-лимфоцитов — Т-киллеров, Т-хелперов, Т-супрессоров, а также В-лимфоцитов, продуцентов антител. Под влиянием интерлейкина-2 из Т-лимфоцитов высвобождаются регуляторные белки — лимфокины, активирующие звенья иммунной системы; синтезируются также Интерфероны.

Интерлейкины, основные лечебные средства при иммунных расстройствах, получают путем клонирования соответствующих генов в Е. coll или культивирования лимфоцитов in vitro. Английская компания Celltech Ltd и японская Sakyo Company предлагают синтезированный генноинженерными бактериями интерлей-кин-1 наряду с другим тюлипептидным агентом —фактором некроза опухолей -- для лечения ряда опухолевых заболеваний (В. Sikyta el al., 1986).

    Получаемые биотехнологическим путем факторы свертывания крови, особенно фактор VIII (с помощью культивируемых клеток млекопитающих) и фактор IX (с помощью генноинженер-ного штамма Е. coli), необходимы для терапии форм гемофилии наследственной болезни, при которой кровь теряет способность свертываться. К числу ценных с клинической точки зрения факторов, полученных в биореакторах с культурами животных клеток, следует отнести фактор роста В-лимфоцитов, фактор активации макрофагов, Т-заместительный фактор, активатор тканевого плазминогена.

    3.4 Моноклокальные антитела и ДНК-или РНК-пробы

 

     Моноклональные антитела — продукты В-гибридомных клеток  — используют для диагностики различных заболеваний. Обладая высокой специфичностью действия, они обеспечивают идентификацию не только вида возбудителя, но и его серотипа. С помощью моноклональных антител можно тестировать различные гормоны, метаболиты, белковые факторы. Наиболее быстрый метод индикации основан на применении антител, иммобилизованных на мембранных электродах — аналогах ферментных биосенсоров. Они позволяют диагностировать беременность, выявлять предрасположенность к диабету, ревматоидному артриту (J. Col-lins et al., 1986), идентифицировать наследственные заболевания, сопровождающиеся утратой тех или иных ферментов и других белковых компонентов. Моноклональные антитела широко используют для диагностики рака и определения его форм.

    Трудности связаны с тем, что специфических «раковых» антигенов, по-видимому, не бывает, и характерные для злокачественно переродившейся клетки детерминанты могут быть с некоторой, пусть небольшой, вероятностью обнаружены и в здоровых клетках. Перспективна диагностика рака при помощи моноклональ-ных антител к вырабатываемым злокачественной опухолью особым гормонам, аутокринам, ведущим к самостимуляции роста раковых клеток.

Моноклональные антитела имеют не только диагностическое, но и лечебное значение. При аутоиммунных заболеваниях, когда иммунные клетки «ополчаются» против собственных органов и тканей, моноклональные антитела соответствующей специфичности могут связывать антитела, наносящие вред организму больного. Для лечения рака предлагают использовать моноклональные антитела, конъюгированные с токсичными для раковых клеток соединениями. Моноклональные антитела доставляют яд точно по адресу, избегая поражения здоровых клеток. Поэтому к моноклональным антителам можно присоединять очень сильные токсины, например рицин — яд из клещевины, одной молекулы которого достаточно для поражения одной клетки. В современной фармацевтической промышленности моноклональные антитела используют для очистки лекарственных препаратов.

    Диагностическое значение имеют короткие фрагменты ДНК и РНК, несущие радиоактивную или иную метку, так называемые ДНК/РНК-пробы. С их помощью можно установить наличие в организме определенных типов нуклеиновых кислот, соответствующих болезнетворным агентам, злокачественным опухолям, а также проверить геном пациента на наличие у него тех или иных генетических аномалий. Метод основан на комплементарном взаимодействии проб с участками ДНК или РНК, выделенными из исследуемых клеток и фиксированными на носителе. Взаимодействия нуклеотидных цепочек пробы с ДНК (РНК) из образца регистрируют по радиоактивной метке или иным способом.

    Моноклональные антитела и ДНК/РНК-пробы используют для диагностики болезней животных и растений. В частности, с помощью этих проб проводят индикацию зараженности картофеля вирусом. Диагностические средства из арсенала биотехнологов предлагают применять для быстрого определения пола у цыплят.

    3.5 Рекомбинантные вакцины и вакцины-антигены

 

    Вакцинация — один из основных способов борьбы с инфекционными заболеваниями. Путем поголовной вакцинации ликвидирована натуральная оспа, резко ограничено распространение бешенства, полиомиелита, желтой лихорадки. На повестке дня — изготовление вакцин против гриппа, гепатитов, герпесов, свинки, кори, острых респираторных заболеваний. Большое экономическое значение имеет разработка вакцин против болезней сельскохозяйственных животных — ящура, африканской болезни лошадей, овечьей болезни «синего языка», трипаносомозов и др. Традиционные вакцинные препараты изготовляют на основе ослабленных, инактивированных или дезинтегрированных возбудителей болезней.

    Современные биотехнологические разработки предусматривают создание рекомбинантных вакцин и вакцин-антигенов. Вакцины обоих типов основаны на генноинженерном подходе.

    Для получения рекомбинантных вакцин обычно используют хорошо известный вирус коровьей оспы (осповакцины). В его ДНК встраивают чужеродные гены, кодирующие иммуногенные белки различных возбудителей (гемагглютинин вируса гриппа, гликопротеин D вируса герпеса, поверхностный антиген вируса гепатита В, антиген малярийного плазмодия). Получаются вакцины против соответствующих инфекций, хорошо зарекомендовавшие себя в опытах на животных. К их достоинствам относится возможность создания поливалентных вакцинных препаратов на основе объединения участков ДНК различных патогенов «под эгидой» ДНК вируса осповакцины. Открывается возможность одномоментной комплексной иммунизации, скажем, крупного рогатого скота против всех опасных инфекций данной местности.

    Вакцины-антигены получают, клонируя гены возбудителя болезни в Е. colt, дрожжах, клетках насекомых и млекопитающих. Клонирован ген поверхностного антигена HBS-вируса гепатита В (сывороточного гепатита), ген белка оболочки УРЬвируса ящура. Вирус ящура существует в виде многих серотипов, методом белковой инженерии удалось скомбинировать иммуногенные компоненты различных серотипов в рамках одной вакцины-антигена.

    Вакцины-антигены высокостабильны при хранении и перевозке, сравнительно просты в изготовлении (в том числе и при крупномасштабном производстве), содержат минимальное количество белка и поэтому малоопасны как аллергены. Они гарантированы от остаточной инфекционности — способности вызывать инфекционную болезнь вместо того, чтобы предохранять от нее. Проблемой является низкая иммуногенность вакцин-антигенов. Одной из причин может быть то, что вакцина не включает всех компонентов возбудителя, необходимых для создания иммунитета к нему. Так, вирус, покидая клетку, часто «одевается» ее мембраной. Компоненты этой мембраны, отсутствующие в генноинженерном белке, могут обладать иммуноген-ными свойствами. К повышению иммуногенности вакцин-антигенов ведет добавление адьювантов, иммобилизация вакцин на носителях или их включение в липосомы.

    3.6 Ферменты медицинского назначения

 

    Многообразно применение ферментных препаратов в медицине. Их используют для растворения тромбов, лечения наследственных заболеваний (вместо отсутствующих эндогенных ферментов), удаления не-

жизнеспособных, денатурированных структур, клеточных и тканевых    фрагментов,    освобождения    организма    от    токсических  веществ    (Н.   Ф.    Казанская   и   др.,    1984).    Яркий   пример-спасение   жизни   больных    с   тромбозом    конечностей,   легких, коронарных    сосудов    сердца    при    помощи    громболитически.х ферментов   (стрсптокиназы,   урокиназы).   В  СССР такие  препараты   созданы   в   иммобилизованной   форме   под   руководством Е.  И.  Чазова   и  И.   В.   Березина.   Ген  урокнназы  клонирован  в бактериях  (S. Prentis, 1984). В современной медицине протеазы применяются для очистки очагов гнойно-некротических процессов от   патологических   продуктов,   а   также   для   лечения   ожогов Лечение рака связано с использованием  L-аспарагиназы,  кото рая лишает раковые клетки ресурсов необходимого для их раз вития    аспарагина,    поступающего    с    током    крови.    Здоровые клетки   в   отличие   от   раковых   (некоторых   типов)   способны   к самостоятельному синтезу аспарагина.

    Известно около 200 наследственных заболеваний, обуслов ленных дефицитом какого-либо фермента или иного белкового фактора. В настоящее время делают попытки лечения этих заболеваний с применением ферментов. Так, пытаются лечить болезнь Готе, при которой организм не способен расщеплять, глюкоцереброзиды (S. Prentis, 1984).

    В   последние   годы   все   больше   внимания   уделяют   ингибиторам  ферментов.  Ингибиторы  протеаз,  получаемые  из  актино мицетов   (лейпептин, антипаин, химостатин и др.)   и генноинже нерных штаммов Е. coil  (эглин)   и дрожжей   антитрипсин) оказываются   полезными   при   септических   процессах,   инфаркте миокарда, эмфиземе легких, панкреатите. Уменьшение концентрации глюкозы в крови больных диабетом  может быть достигнуто при  исполь зовании ингибиторов кишечных инвертаз и амилаз, отвечающих за превращение крахмала и сахарозы в глюкозу.  Особой задачей является  поиск  ингибиторов ферментов, с   помощью   которых   патогенные   микроорганизмы   разрушают антибиотики, вводимые в организм больного.

Таковы основные направления  биотехнологических разработок в области медицины. Без преувеличения можно сказать что центральное приложение новейших биотехнологических подходов — медицина. Одной из проблем, связанных с белками медицинского назначения, является наличие у них побочных эффектов. Например, аллергические реакции возникают как против генноинженерных белков, так и против моноклональных антител, даже если их получают на основе человеческих гибридом. Эта проблема не нова для медицины и не является непреодолимой.

Информация о работе Роль биотехнологии в решении глобальных проблем