Автор работы: Пользователь скрыл имя, 10 Февраля 2015 в 14:59, статья
Все виды наблюдений за окружающей средой подразделяют на прямые и косвенные.
Прямые виды осуществляются путём отбора проб объекта окружающей среды с последующим анализом в лабораторных условиях.
Косвенные виды – это скорее наблюдение за воздействием на окружающую среду. Косвенные виды в свою очередь делятся на дистанционные, расчётные и прогнозные.
чувствителен в зоне высокой отражательной способности для большинства почв;
полезен для оконтуривания снежного покрова.
4 канал (ближний инфракрасный):
различает растительное многообразие;
может быть использован для оконтуривания водных объектов и разделения сухих и влажных почв, так как вода сильно поглощает ближние инфракрасные волны.
5 канал (средний или коротковолновый инфракрасный):
чувствителен к изменению содержания воды в тканях листьев (набухаемости);
чувствителен к варьированию влаги в растительности и почвах (отражательная способность уменьшается при возрастании содержания воды);
полезен для определения энергии растений и отделения суккулентов от древесной растительности;
особенно чувствителен к наличию/отсутствию трехвалентного железа в горных породах (отражательная способность возрастает при увеличении количества трехвалентного железа);
отличает лед и снег (светлый тон) от облаков (темный тон).
6 канал (длинноволновый инфракрасный или тепловой):
датчики предназначены для измерения температуры излучающей поверхности от −100оС до 150оС;
подходит для дневного и ночного использования;
применение тепловой съемки: анализ влажности почв, типов горных пород, выявление теплового загрязнения воды, бытового скопления тепла, источников городского производства тепла, инвентаризация живой природы, выявление геотермальных зон.
7 канал (средний, или коротковолновый инфракрасный):
совпадает с полосой поглощения излучения гидроминералами (глинистые сланцы, некоторые оксиды и сульфаты), благодаря чему они выглядят темными;
полезен для литологической съемки;
как и 5-й канал, чувствителен к варьированию влаги в растительности и почвах.
8 канал (панхроматический — 4,3,2):
наиболее типичная комбинация каналов, используемая в дистанционном зондировании для анализа растительности, зерновых культур, землепользования и водно-болотных угодий (wetlands).
Компьютерные методы обработки спутниковых данных
Целью обработки данных дистанционного зондирования (ДЗ) является получение снимков или изображений с требуемыми радиометрическими и геометрическими характеристиками. Рассмотрим основные этапы обработки данных. В общем случае обработка данных дистанционного зондирования включает три этапа:
предварительная обработка — прием спутниковых данных, запись их на магнитный носитель, декодировка и корректировка, преобразование данных непосредственно в изображение или космический снимок или в форматы, удобные для последующих видов обработки;
первичная обработка — исправление искажений, вызванных нестабильностью работы космического аппарата и датчика, а также географическая привязка изображения с наложением на него сетки координат, изменение масштаба изображения и представление изображения в необходимой географической проекции (геокодирование);
вторичная (тематическая) обработка — цифровой анализ с применением статистических методов обработки, визуальное дешифрирование и интерпретация в интерактивном или полностью автоматизированном режиме.
Первый и второй этапы обработки в настоящее время могут быть выполнены на борту космического аппарата.
Многозональная съемка ведется многие годы, и исследователи накопили большой объём эмпирических данных. Уже хорошо известно, какие соотношения яркости в различных зонах спектра соответствуют растительности, обнаженной почве, водным поверхностям, урбанизированным территориям и другим распространенным типам ландшафта, существуют библиотеки спектров различных природных образований. Выразив эти соотношения в виде линейных комбинаций различных зон, можно получать так называемые индексы. Так как многие современные системы дистанционного зондирования Земли осуществляют съемку в видимой красной и ближней инфракрасной частях спектра, то распространенным методом является вычисление нормализованного вегетационного индекса (NDVI). Нормализованный вегетационный индекс показывает наличие и состояние растительности по соотношению отраженных энергий в 2 спектральных каналах. Вычисляется по следующей формуле: NDVI=NIR-RED/NIR+RED, где NIR — отражение в ближней инфракрасной области спектра; RED — отражение в красной области спектра. Эта зависимость основана на различных спектральных свойствах хлорофилла в видимом и ближнем ИК диапазонах. Вегетационные индексы можно рассматривать как промежуточный этап при переходе от эмпирических показателей к реальным физическим свойствам растительного покрова. Часто вычисляют универсальные и территориально-привязанные индексы: LAI — индекс листовой поверхности или FPAR — индекс фотосинтетической активной радиации, поглощаемый растительностью и пр. Индекс LAI можно измерить в натурных условиях. В настоящее время в Интернет ежемесячно публикуются растровые изображения LAI (пространственное разрешение 250 м) на весь мир. Эти данные в сочетании с методами классификации мультиспектральных изображений могут значительно повысить достоверность при обработке изображений в экспертных системах, учитывающих множество различной информации.
Как известно, антропогенное воздействие на окружающую среду приводит к возникновению масштабных трудноразрешимых противоречий между интересами развития производства и сохранением природы, поскольку в результате интенсивного использования природных ресурсов происходит разрушение природных систем и интенсивное загрязнение среды. Ещё в Стокгольме на Первой Международной конференции ООН по оценке состояния природной среды в 1972 г. было признано, что экологическое состояние природной среды в промышленных странах стало угрожать не только здоровью населения, но и самому существованию человечества. Решение этих проблем, возникающих в связи с катастрофическим ухудшением окружающей природной среды, занимает сейчас центральное место при выработке стратегии экологически устойчивого социально-экономического развития промышленно развитых стран, в том числе и России. В последние годы в круг фундаментальных исследований проблем экологии территории России широко вовлечены космические методы контроля состояния экосистем.
Появление глобальной компьютерной сети Интернет и разработка передовых информационных технологий открыли новый этап развития космического экологического мониторинга. Особенностью нового этапа является широкое использование телекоммуникационной инфраструктуры, а также гипертекстовых и интерактивных информационных технологий, которые чрезвычайно перспективны в дистанционном мониторинге состояния окружающей среды. Актуальной является также проблема интегрирования национальных информационных ресурсов по окружающей среде, создание региональных баз данных и расширение электронных коллекций по результатам космического экологического мониторинга. Развитие технологий наблюдения из космоса, создание инфраструктур спутникового экологического мониторинга регионов России наряду с разработкой экологической системы контроля в реальном масштабе времени призваны сыграть ключевую роль в обеспечении безопасности окружающей среды и устойчивого развития экономики России.
В связи с этим создаются Центры космического мониторинга (ЦКМ), которые осуществляют оперативный контроль состояния окружающей среды и природных ресурсов (например, Институт солнечно-земной физики СО РАН, г. Иркутск), создают многоуровневые информационные системы пространственно-временного мониторинга состояния окружающей среды, включающие технические и программные средства сбора, обработки, анализа и хранения спутниковой информации.
Во всем мире исследования Земли из космоса приобретают всеобъемлющий характер. Наиболее информативным методом для решения задач дистанционного исследования поверхности Земли из космоса является использование и тематический анализ изображений, полученных приборными комплексами различных частотных диапазонов, установленных на космических аппаратах. Целый ряд спутников, оснащенных приборами дистанционного зондирования (радиолокаторами, скаттерометрами, радиометрами и оптической техникой), выведены на орбиту специально для получения разносторонней геофизической информации, необходимой для оценки состояния окружающей среды и для природо-ресурсных исследований.
Наземные методы экологического мониторинга.
Физико-химические методы
-Качественные методы. Позволяют определить, какое вещество находится в испытуемой пробе. Например на основе хроматографии.
-Количественные методы.
-Гравиметрический метод.
Суть метода состоит в
-Титриметрический (объемный) метод. В этом виде анализа взвешивание заменяется измерением объёмов, как определяемого вещества, так и реагента, используемого при данном определении. Методы титриметрического анализа разделяют на 4 группы: а) методы кислотно-основного титрования; б) методы осаждения; в) методы окисления-восстановления; г) методы комплексообразования.
-Колориметрические методы. Кол
-Экспресс-методы. К экспресс
методам относятся
-Потенциометрические методы основаны на изменении потенциала электрода в зависимости от физико-химических процессов, протекающих в растворе. Их разделяют на: а) прямую потенциометрию (ионометрию); б) потенциометрическое титрование.
Методы биологического мониторинга
Биоиндикация — метод, который позволяет судить о состоянии окружающей среды по факту встречи, отсутствия, особенностям развития организмов-биоиндикаторов. Биоиндикаторы — организмы, присутствие, количество или особенности развития которых служат показателями естественных процессов, условий или антропогенных изменений среды обитания. Условия, определяемые с помощью биоиндикаторов, называются объектами биоиндикации.
Биотестирование — метод, позволяющий в лабораторных условиях оценить качество объектов окружающей среды с помощью живых организмов.
Оценка компонентов биоразнообразия — является совокупностью методов сравнительного анализа компонентов биоразнообразия.
Методы статистической и математической обработки данных
Для обработки экомониторинговых
данных используются методы вычислительной и матема
Географические информационные системы
ГИС является отражением общей тенденции привязки экологических данных к пространственным объектам. Как считают некоторые специалисты, дальнейшая интеграция ГИС и экологического мониторинга приведёт к созданию мощных ЭИС (экологических информационных систем) с плотной пространственной привязкой.
Информация о работе Современные аналитические методы в экологическом мониторинге