Экологический мониторинг

Автор работы: Пользователь скрыл имя, 03 Декабря 2014 в 11:18, лекция

Краткое описание

Экологический мониторинг – информационная система сбора, анализа и обобщения информации об антропогенном влиянии на состояние окружающей природной среды для предотвращения отрицательных природно-антропогенных эффектов.
В зависимости от пространственных масштабов экологический мониторинг делится на глобальный, региональный и локальный. Каждому уровню присущи свои особенности в организации работ.
Экомониторинг существует для предотвращения кризисов и катастроф во взаимоотношениях между человеком и природой, что достигается проведением экологических наблюдений, выполнением оценок и прогнозов антропогенного воздействия на окружающую среду.

Содержание

Предисловие 4
Введение 6
1. Научные основы экологического мониторинга 8
2. Экологические наблюдения 19
3. Экологическая оценка 26
4. Экологический прогноз 35
5. Основы законодательства Российской Федерации в области экологического мониторинга 41
6. Экологический менеджмент и мониторинг 53
7. Локальный экологический мониторинг 60
8. Порядок разработки аналитической программы и технологических регламентов мониторинга 70
9. Обеспечение достоверности аналитических данных мониторинга 77
10. Экологическая информация в системе мониторинга 98
11. Внутренний аудит системы экологического мониторинга 109
Литература 114
ПРИЛОЖЕНИЕ 1. Перечень нормативных документов, стандартов, регламентирующих проведение экологического мониторинга в Российской Федерации 115
ПРИЛОЖЕНИЕ 2. Перечень действующих нормативных документов Госкомэкологии России 120
ПРИЛОЖЕНИЕ 3. Формы отчетной документации для органов экологического мониторинга 133
ПРИЛОЖЕНИЕ 4. Порядок определения объектов наблюдения, параметров и периодичности наблюдений при проведении экологического мониторинга нефтедобывающего предприятия 141
ПРИЛОЖЕНИЕ 5. Перечень показателей, анализируемых при проведении экологического мониторинга природных и сточных вод 151

Вложенные файлы: 1 файл

otvety_na_bilety_po_ekologicheskomu_monitoringu.doc

— 795.50 Кб (Скачать файл)

Для изучения особенностей загрязнения воздуха выбросами автотранспорта организуют специальные наблюдения, в результате которых устанав¬ливают:

-максимальные значения концентраций  основных примесей, выбрасываемых автотранспортом в районах автомагистралей, и период их наступле¬ния при различных метеоусловиях и интенсивности движения транспорта;

-границы зон и характер распределения  примесей по мере удаления  от автомагистралей;

-особенности распространения примесей в жилых кварталах различно¬го типа застройки и в зеленых зонах, примыкающих к автомагистралям;

-особенности распределения транспортных  потоков по магистралям города.

Наблюдения проводят во все дни рабочей недели ежечасно, с 6 до 13 ч или с 14 до 21 ч, чередуя дни с утренними и вечерними сроками. В ночное время наблюдения ведутся 1-2 раза в неделю.

Точки наблюдения выбираются на городских улицах, в районах с интенсивным движением транспорта, и располагаются на различных участках улиц, в местах, где часто производится торможение автомобилей и выбрасывается наибольшее количество вредных примесей.

Места для размещения приборов выбираются на тротуаре, на середине разделительной полосы при ее наличии и за пределами тротуара, на расстоя¬нии половины ширины проезжей части одностороннего движения. Пункт, наиболее удаленный от автомагистрали, должен располагаться не менее чем в 0,5 м от стены здания. На улицах, пересекающих основную автомагистраль, пункты наблюдения устанавливаются на краях тротуаров и на расстояниях, превышающих ширину магистрали в 0,5, 2, 3 раза.

Интенсивность движения определяется путем учета числа проходящих транспортных средств, которые делятся на пять основных категорий: легко¬вые и грузовые автомобили, автобусы, дизельные автомобили и автобусы, мотоциклы - ежедневно в течение 2-3 недель в период с 3-6 до 21-23 ч, а на транзитных автомагистралях - в течение суток. Количество проходящих транспортных единиц подсчитывается в течение 20 мин, каждого транспорта -каждые 20 мин. Средняя скорость движения транспорта определяется на основе показателей спидометра автомашины, движущейся в потоке транс¬портных средств, на участке протяженностью от 0,5 до 1 км данной автома¬гистрали. На основании результатов наблюдений вычисляются средние зна¬чения интенсивности движения автотранспорта в течение суток.

 

5.3 Мониторинг города с населением  до 500 тыс. человек

 

Головной организацией по проведению мониторинга в городе обычно является подразделение Росгидромета. В мониторинге также, как правило, участвует городской комитет по охране окружающей среды и лаборатории крупнейших предприятий. Для разработки программы мониторинга необхдимо провести инвентаризацию источников загрязнения, мощность выбросов и сбросов загрязнителей окружающей среды. Для полноценного мониторинга атмосферы такого города обычно достаточно двух-трех стационарных пунк¬тов наблюдения за загрязнением воздуха и периодических маршрутных съе¬мок с помощью автомашины-лаборатории. Контроль за состоянием водных объектов строится в зависимости от наличия таковых, их вида и гидрологи¬ческих особенностей в черте города и на его окраинах. Перечень определяе¬мых загрязнителей формируется на основе уже указанных принципов. Бли¬зость сельскохозяйственной зоны обусловливает необходимость контроля количества пестицидов в атмосфере и водных артериях города.

 

5.4 Мониторинг промышленного предприятия

 

Организация мониторинга промышленного предприятия начинается с определения отрасли, к которой оно принадлежит, изучения технологических регламентов, инвентаризации потребляемых ресурсов, выбросов и сбросов, а также анализа состояния окружающего предприятие района. В сбросах и выбросах должны учитываться тепло, взвешенные частицы, химические соединения и радиоактивные вещества, если таковые имеются.

Если предприятие еще не работает, то на стадиях проектирования и строительства следует провести фоновый мониторинг района, результаты которого будут служить эталоном при определении влияния на окружающую среду в районе предприятия после его пуска.

Мониторинг района промышленного предприятия обычно проводят его собственные службы и независимые организации Росгидромета, Госсанэпиднадзора, местных органов охраны природы.

На основе анализа состояния окружающей среды района и общих нормативов предприятию определяются ПДВ и ПДС, которые и должны неукос¬нительно соблюдаться, контроль чего также входит в программу мониторин¬га.

Подлежащие определению в ходе мониторинга загрязнители устанавливаются в соответствии с профилем предприятия.

 

5.5 Мониторинг района ТЭС и  АЭС

 

Современная угольная ТЭС мощностью 2400 МВт потребляет 1060 т/ч топлива, при этом образуется (т/ч): шлака - 34,5, золы - 195,5, оксида углеро¬да (IV) - 2350, оксида серы (IV) - 34 и оксидов азота - 9,4. Кроме того, в соответствии с КПД термодинамического никла станции в окружающую среду сбрасывается значительное количество тепла, которое распределяется между твердыми и газообразными продуктами сгорания и водой системы охлажде¬ния. Средний расход охлаждающей воды и количество отводимой ею тепло¬ты на 1000 МВт составляют 30 м7с и 4500 ГДж/ч соответственно.

Для каждой ТЭС природоохранные органы устанавливают ПДВ, исхо¬дя из расположения ТЭС, наличия других источников загрязнителей в дан¬ном районе, расположения населенных пунктов, водных объектов и других особенностей района. Эти ПДВ должны обеспечивать выполнение всех санитарных норм (ПДК) в районе.

При определении ПДВ проводятся расчеты концентраций загрязните¬лей согласно технологическим регламентам и используются результаты экспериментальных исследований загрязненности атмосферы в районе ТЭС, если она уже работает.

В дальнейшем мониторинг района ТЭС направлен на контроль за соблюдением установленных нормативов стационарными и подфакельными пунктами контроля. Часто на дымовой трубе устанавливаются датчики автоматизированных систем точечного контроля состава и других параметров выходящих газов, относящиеся к системе объектового контроля источников загрязнения.

Во многих промышленно развитых странах создаются автоматизированные системы локального контроля загрязнения атмосферы, которые ос¬нащены датчиками концентраций основных загрязнителей и гидрометеопараметров, аппаратурой для сбора и обработки их показателей. Датчики обычно располагаются на территории с радиусом примерно 10 км. В Японии, например, действуют около 800 таких станций, включающих в себя различ¬ные датчики, состав которых определяется спецификой предприятия.

Тепло, сбрасываемое с охлаждающей водой, может использоваться для различных целей (горячее водоснабжение, отопление теплиц, рыборазведе¬ние и т.п.).

АЭС потребляет топлива на несколько порядков меньше, чем ТЭС, так как 1т урана эквивалентна примерно 2,5-г-З млн т каменного угля. «Дымо¬вые» трубы АЭС не дымят, поэтому химических загрязнителей АЭС практи¬чески не выбрасывает в атмосферу. Средний расход охлаждающей воды и количество отводимого ей тепла на 1000 МВт для АЭС составляет 50 м /с и 7300 ГДж/ч соответственно. Основным же загрязнителем, выбрасываемым АЭС, является радиоактивность, поэтому мониторинг АЭС часто называют радиационным, а основной проблемой - накопление радиоактивных отходов.

Кстати, необходимо отметить, что и работа ТЭС связана с накоплением радиоактивности - природной, так как природные радиоактивные изотопы содержатся во всех видах топлива, а особенно в каменном угле и сланцах. В сбрасываемых ТЭС шлаках и золе концентрация этих изотопов возрастает в несколько (иногда десятки) раз, на что, однако, в большинстве случаев не обращают должного внимания.

В нормировании деятельности АЭС реализуется санитарно-гигиенический принцип защиты человека от радиационных воздействий. Со¬гласно ему, дозовая квота для облучения населения излучением радиоактив¬ных отходов АЭС равна 25 мбэр (5% предельной дозы), причем за счет вы¬бросов в атмосферу - 20 мбэр, а за счет сбросов в водоем-накопитель - 5 мбэр. Эти дозы включают внешнее облучение от изотопов, поступивших в атмосферу и выпавших на местность, и внутреннее - от изотопов, поступив¬ших в организм человека через дыхательные пути и пищевые цепочки.

В процессе проведения радиационного мониторинга ведется наблюде¬ние за поступлением радиоактивных изотопов в окружающую среду, их накоплением, концентрациями, миграцией в пищевых цепях и т.д. При этом контроль ведется как по суммарной активности, так и индивидуально по всем нормированным изотопам (йод-131, стронций-89 и -90, цезий-137 и др.).

Радиационный мониторинг осуществляется через сеть станций (по¬стов), расположенных в 30-километровой зоне вокруг АЭС. Как и в случае ТЭС, эта сеть может быть и даже в более значительной степени автоматизи¬рована.

Однако чисто радиационный мониторинг района АЭС имеет ряд недос¬татков:

- не учитываются тепловые и химические (даже если последние и не столь значительны, как в случае ТЭС) загрязнители,

- человек не всегда является наиболее чувствительным звеном экосистемы;

- иногда не учитывается вклад глобальных выпадений радиоактивных изотопов и т.п.

Поэтому для полного понимания взаимоотношений АЭС с экосистема¬ми района ее расположения требуется проведение комплексного экологиче¬ского мониторинга района АЭС.

Экологический мониторинг района АЭС включает мониторинг источников загрязнения, мониторинг внешних факторов и мониторинг окружаю¬щей среды. Мониторинг окружающей среды включает определение наиболее чувствительных звеньев экосистемы к различным видам воздействия. Наибо¬лее полная картина взаимодействия в системе «АЭС - окружающая среда» может быть получена, если ранее был проведен фоновый мониторинг на ста¬дии проектирования и строительства АЭС. Биологический мониторинг жела¬телен на всех основных уровнях, в том числе и на уровне крупных млекопи¬тающих. Нужен учет их численности в районе до пуска и в условиях работы АЭС, причем необходимо учитывать и другие факторы, которые могут вли¬ять на этот показатель.

 

18. эколого-географическая  оценка окружающей среды

Устойчивость экосистем

  Экосистема может быть описана  комплексной схемой прямых и  обратных связей, поддерживающих  гомеостаз системы в некоторых  пределах параметров окружающей  среды[4]. Таким образом, в некоторых  пределах экосистема способна  при внешних воздействиях поддерживать свою структуру и функции относительно неизменными. Обычно выделяют два типа гомеостаза: резистентный — способность экосистем сохранять структуру и функции при негативном внешнем воздействии (см. Принцип Ле Шателье — Брауна) и упругий — способность экосистемы восстанавливать структуру и функции при утрате части компонентов экосистемы[25]. В англоязычной литературе используются сходные понятия: локальная устойчивость — англ. local stability (резистентный гомеостаз) и общая устойчивость — англ. global stability (упругий гомеостаз)[15].

 

Коралловые рифы — пример хрупкости биоразнообразия

 

Иногда выделяют третий аспект устойчивости — устойчивость экосистемы по отношению к изменениям характеристик среды и изменению своих внутренних характеристик[15]. В случае, если экосистема устойчиво функционирует в широком диапазоне параметров окружающей среды и/или в экосистеме присутствует большое число взаимозаменяемых видов (то есть, когда различные виды, сходные по экологическим функциям в экосистеме, могут замещать друг друга), такое сообщество называют динамически прочным (устойчивым). В обратном случае, когда экосистема может существовать в весьма ограниченном наборе параметров окружающей среды, и/или большинство видов незаменимы в своих функциях, такое сообщество называется динамически хрупким (неустойчивым)[15]. Необходимо отметить, что данная характеристика в общем случае не зависит от числа видов и сложности сообществ. Классическим примером может служить Большой Барьерный риф у берегов Австралии (северо-восточное побережье), являющийся одной из «горячих точек» биоразнообразия в мире — симбиотические водоросли кораллов, динофлагелляты, весьма чувствительны к температуре. Отклонение от оптимума буквально на пару градусов ведёт к гибели водорослей, а до 50-60 % (по некоторым источникам до 90 %) питательных веществ полипы получают от фотосинтеза своих мутуалистов[26][27].

 

 Различные положения равновесия  систем (иллюстрация)

 

У экосистем существует множество состояний, в которых она находится в динамическом равновесии; в случае выведения из него внешними силами, экосистема совершенно необязательно вернётся в изначальное состояние, зачастую её привлечёт ближайшее равновесное состояние (аттрактор), хотя оно может быть очень близким к первоначальному[28].

 

Биоразнообразие и устойчивость в экосистемах

Дождевые леса Амазонии, как и влажные экваториальные леса, являются местами наибольшего биоразнообразия

 

Обычно устойчивость связывали и связывают с биоразнообразием видов в экосистеме (альфаразнообразие), то есть, чем выше биоразнообразие, чем сложнее организация сообществ, чем сложнее пищевые сети, тем выше устойчивость экосистем. Но уже 40 и более лет назад на данный вопрос существовали различные точки зрения, и на данный момент наиболее распространено мнение, что как локальная, так и общая устойчивость экосистемы зависят от значительно большего набора факторов, чем просто сложность сообществ и биоразнообразие. Так, на данный момент с повышением биоразнообразия обычно связывают повышение сложности, силы связей между компонентами экосистемы, стабильность потоков вещества и энергии между компонентами[15].

 

 Экваториальный дождевой лес  может содержать более 5000 видов  растений (для сравнения в лесах  таёжной зоны — редко более 200 видов)

 

Важность биоразнообразия состоит в том, что оно позволяет формировать множество сообществ, различных по структуре, форме, функциям, и обеспечивает устойчивую возможность их формирования. Чем выше биоразнообразие, тем большее число сообществ может существовать, тем большее число разнообразных реакций (с точки зрения биогеохимии) может осуществляться, обеспечивая существование биосферы в целом[29].

 

Потоки вещества и энергии в экосистемах

 

 Принципиальная схема потоков  вещества и энергии в экосистеме, на примере системы ручьев  Сильвер Спринг (англ. Silver Spring). По Одуму, 1971.

 

На данный момент научное понимание всех процессов внутри экосистемы далеко от совершенства, и в большей части исследований либо вся экосистема, либо некоторые её части выступают в качестве «чёрного ящика»[2]. В то же время, как любая относительно замкнутая система, экосистема характеризуется входящим и выходящим потоком энергии и распределением этих потоков между компонентами экосистем.

 

Продуктивность экосистем

Информация о работе Экологический мониторинг