Вторичная переработка пластмасс с целью повышения экономии и возврата сырьевых ресурсов в производственный процесс

Автор работы: Пользователь скрыл имя, 29 Апреля 2014 в 20:20, реферат

Краткое описание

Одним из наиболее осязаемых результатов антропогенной деятельности является образование отходов, среди которых отходы пластмасс занимают особое место в силу своих уникальных свойств.
Пластмассы – это химическая продукция, состоящая из высокомолекулярных, длинноцепных полимеров. Производство пластических масс на современном этапе развития возрастает в среднем на 5…6 % ежегодно и к 2010 г., по прогнозам, достигнет 250 млн. т. Их потребление на душу населения в индустриально развитых странах за последние 20 лет удвоилось, достигнув 85…90 кг, К концу десятилетия как полагают, эта цифра повысится на 45…50 %.
Одним из быстроразвивающихся направлений использования пластмасс является упаковка.

Содержание

РОССИЙСКИЙ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ
ИМ Д.И.МЕНДЕЛЕЕВА

Реферат
На тему:
“Вторичная переработка пластмасс с целью повышения экономии и возврата сырьевых ресурсов в производственный процесс”





Выполнил:
Павлова Елизавета
Группа Тм-38
Проверил:
Разбиралова Александра



Москва 2014
Содержание:
1. Введение…………………………………………………………………………………..………….…2
2. Анализ состояния вторичной переработки и утилизации полимерных материалов…..…...3
2.1. Анализ состояния вторичной переработки полимерных материалов…………..…………..3
2.2. Утилизация отходов полиолефинов………………………………………………………...……6
2.2.1. Структурно-химические особенности вторичного полиэтилена…………………………6
2.2.2. Технология переработки вторичного полиолефинового сырья в гранулят……………9
2.2.3. Способы модификации вторичных полиолефинов……………………………………….12
2.3. Вторичная переработка поливинилхлорида……………………………………………..…..15
2.3.1. Методы подготовки отходов поливинилхлорида………………………………………….15
2.3.2. Методы переработки отходов поливинилхлоридных пластиков……………………….16
2.4. Утилизация отходов полистирольных пластиков…………………………………………..20
2.5. Переработка отходов полиамидов……………………………………………………..………22
2.5.1. Методы переработки отходов па……………………………………………..………………23
2.5.2. Технологические процессы повторной переработки отходов па…….………………….25
2.6. Вторичная переработка отходов полиэтилентерефталата…………………………………26
2.7. Сжигание………………………………………………………………………..………………...28
2.8. Переработка отходов рти……………………………………………………….………….……28
2.8.1. Дробление изношенных покрышек и камер……………………………..…………………29
3. Заключение………………………………………………………………………..…………………30
4. Список литературы……………………………………………………………..…………………..31

Вложенные файлы: 1 файл

Павлова Лиза Тм-38.docx

— 99.32 Кб (Скачать файл)

Получение порошков из отходов ПА путем переосаждения из растворов представляет собой способ очистки полимеров, получения их в виде, удобном для дальнейшей переработки. Порошки могут применяться, например, для чистки посуды, как компонент косметических средств и др.

Широко распространенным методов регулирования механических свойств ПА является наполнение их волокнистыми материалами (стекловолокном, асбестовым волокном и т.п.).

Примером высокоэффективного использования отходов ПА является создание на их основе материала АТМ-2, обладающего высокими прочностью, износостойкостью, стабильностью размеров.

Перспективным направлением улучшения физико-механических и эксплуатационных свойств изделий из вторичного ПКА является физическое модифицирование формованных деталей путем их объемно-поверхностной обработки. Объемно-поверхностная обработка образцов из вторичного ПКА, наполненного каолином и пластифицированного сланцевым мягчителем в нагретом глицерине приводит к росту ударной вязкости на 18 %, разрушающего напряжения при изгибе на 42,5 %, что может быть объяснено формованием более совершенной структуры материала и снятием остаточных напряжений.

[pagebreak]

2.5.2  Технологические процессы повторной переработки отходов ПА

Основными процессами, используемыми для регенерации вторичного полимерного сырья из отходов ПА, являются:

  1. регенерация ПА путем экструзии изношенных капроновых сетематериалов и технологических отходов с получением гранулированных продуктов, пригодных для переработки в изделия методом литья под давлением;
  2. регенерация ПА из изношенных изделий и технологических отходов капрона, содержащих волокнистые примеси (не полиамиды), путем растворения, фильтрации раствора и последующего осаждения ПА в виде порошкообразного продукта.

Технологические процессы переработки изношенных изделий отличаются от переработки технологических отходов наличием стадии предварительной подготовки, включающей разборку сырья, его отмывку, промывку, отжим и сушку вторичного сырья. Предварительно подготовленные изношенные изделия и технологические отходы поступают на измельчение, после чего направляются в экструдер для грануляции.

Вторичное волокнистое полиамидное сырье, содержащее неполиамидные материалы, обрабатывают в реакторе при комнатной температуре водным раствором соляной кислоты, фильтруют для удаления неполиамидных включений. Порошкообразный полиамид осаждают водным раствором метанола. Осажденный продукт измельчают и полученный порошок рассеивают.

В настоящее время в нашей стране технологические отходы, образующиеся в производстве капронового волокна достаточно эффективно используются для производства нетканых материалов, напольных покрытий и гранулята для литья и экструзии. Основной причиной недостаточного использования вышедших из строя изделий из ПА из компактных источников является отсутствие высокоэффективного оборудования для их первичной обработки и переработки.

Разработка и промышленное внедрение процессов переработки изношенных изделий из капронового волокна (чулочно-носочных, сетеснастных материалов и др.) во вторичные материалы позволит достичь экономии значительного количества исходного сырья и направить его в наиболее эффективные области применения.

2.6  ВТОРИЧНАЯ ПЕРЕРАБОТКА ОТХОДОВ ПОЛИЭТИЛЕНТЕРЕФТАЛАТА

Переработка лавсановых волокон и изношенных изделий из ПЭТФ аналогична вторичной переработке полиамидных отходов, поэтому в данном разделе рассмотрим вторичную переработку ПЭТФ бутылок.

За более чем 10 лет массового потребления в России напитков в упаковке из ПЭТФ на полигонах твердых бытовых отходов накопилось по некоторым оценкам более 2 млн. т использованной пластиковой тары, являющейся ценным химическим сырьем.

Взрывной рост производства бутылочных преформ, повышение мировых цен на нефть и, соответственно, на первичный ПЭТФ, повлияли на активное формирование в России в 2000 г. рынка по переработке использованных ПЭТФ бутылок.

Существует несколько методов переработки использованных бутылок. Одной из интересных методик является глубокая химическая переработка вторичного ПЭТФ с получением диметилтерефталата в процессе метанолиза или терефталевой кислоты и этиленгликоля в ряде гидролитических процессов. Однако такие способы переработки имеют существенный недостаток – дороговизна процесса деполимеризации. Поэтому в настоящее время чаще применяются довольно известные и распространенные механохимические способы переработки, в процессе которых конечные изделия формируются из расплава полимера. Разработан значительный ассортиментный ряд изделий, получаемых из вторичного бутылочного полиэтилентерефталата. Основным крупнотоннажным производством является получение лавсановых волокон (в основном штапельных), производство синтепонов и нетканых материалов. Большой сегмент рынка занимает экструзия листов для термоформования на экструдерах с листовальными головками, и, наконец, наиболее перспективным способом переработки повсеместно признано получение гранулята, пригодного для контакта с пищевыми продуктами, т.е. получение материала для повторной отливки преформ.

Бутылочный полупродукт может быть использован в технических целях: в процессе переработки в изделия вторичный ПЭТФ можно добавлять в первичный материал; компаундирование – вторичный ПЭТФ можно сплавлять с другими пластиками (например, с поликарбонатом, с ВПЭ) и наполнять волокнами для производства деталей технического назначения; получение красителей (суперконцентратов) для производства окрашенных пластиковых изделий.

Также очищенные ПЭТФ хлопья можно непосредственно использовать для изготовления широкого ассортимента товаров: текстильного волокна; набивочных и штапельных волокон – синтепона (утеплитель для зимних курток, спальных мешков и др.); кровельных материалов; пленок и листов (окрашенных, металлизированных); упаковки (коробки для яиц и фруктов, упаковка для игрушек, спортивных товаров и т.д.); литьевых изделий конструкционного назначения для автомобильной промышленности; деталей осветительных и бытовых приборов и др.

В любом случае исходным сырьем для деполимеризации или переработки в изделия являются не бутылочные отходы, которые могли пролежать какое-то время на свалке, и представляющие собой бесформенные сильно загрязненные объекты, а чистые хлопья ПЭТФ.

Рассмотрим процесс переработки бутылок в чистые хлопья пластика.

По возможности бутылки должны уже собираться в отсортированном виде, не смешиваясь с другими пластиками и загрязняющими объектами. Оптимальным объектом для переработки является спрессованная кипа из бесцветных ПЭТФ бутылок (окрашенные бутылки должны быть отсортированы и переработаны отдельно). Бутылки необходимо хранить в сухом месте. Пластиковые мешки с ПЭТФ бутылками навалом опорожняют в загрузочный бункер. Далее бутылки поступают в бункер-питатель. Питатель кип используется одновременно и как бункер хранения с системой равномерной подачи, и как разбиватель кип. Транспортер, расположенный на полу бункера, продвигает кипу к трем вращающимся шнекам, разбивающим агломераты на отдельные бутылки и подающим их на разгрузочный конвейер. Здесь необходимо разделять бутылки из окрашенного и неокрашенного ПЭТФ, а также удалять посторонние объекты, такие как резина, стекло, бумага, металл, другие типы пластиков.

В однороторной дробилке, оборудованной гидравлическим толкателем, ПЭТФ бутылки измельчаются, образуя крупные фракции размером до 40 мм.

Измельченный материал проходит через воздушный вертикальный классификатор. Тяжелые частицы (ПЭТФ) падают против воздушного потока на экран вибросепаратора. Легкие частицы (этикетки, пленка, пыль и т.д.) уносятся вверх потоком воздуха и собираются в специальном пылесборнике под циклоном. На виброэкране сепаратора частицы разделяются на две фракции: крупные частицы ПЭТФ "перетекают" через экран, а мелкие частицы (в основном тяжелые фракции загрязнений), проходят вовнутрь экрана и собираются в емкости под сепаратором.

Флотационный танк используется для сепарации материалов с разными относительными плотностями. Частицы ПЭТФ опускаются на наклонное дно, и шнек непрерывно выгружает ПЭТФ на водоот-делительный экран.

Экран служит одновременно как для отделения воды, нагнетаемой вместе с ПЭТФ из флотатора, так и для отделения тонких фракций загрязнений.

Предварительно раздробленный материал эффективно отмывается в наклонном двухступенчатом вращающемся барабане с перфорированными стенками.

Сушка хлопьев происходит во вращающемся барабане, изготовленном из перфорированного листа. Материал перевертывается в потоках горячего воздуха. Воздух нагревается электрическими нагревателями.

Далее хлопья попадают во вторую дробилку. На этой стадии крупные частицы ПЭТФ измельчаются в хлопья, размер которых составляет приблизительно 10 мм. Необходимо отметить, что идея переработки состоит в том, что материал не измельчается в хлопья товарного продукта на первой стадии измельчения. Такое ведение процесса позволяет избежать потерь материала в системе, достичь оптимального отделения этикеток, улучшить моющий эффект и уменьшить износ ножей во второй дробилке, так как стекло, песок и прочие абразивные материалы удаляются до стадии вторичного измельчения.

Конечный процесс аналогичен процессу первичной воздушной классификации. Остатки этикеток и пыль ПЭТФ удаляются с воздушным потоком. Конечный продукт – чистые ПЭТФ хлопья засыпаются в бочки.

Таким образом, можно решить серьезный вопрос утилизации вторичной пластиковой тары с получением продукта.

Перспективным способом вторичной переработки ПЭТФ является производство бутылок из бутылок.

Главными стадиями классического процесса рецайклинга для реализации схемы "бутылка к бутылке" являются: сбор и сотрировка вторичного сырья; пакетирование вторичного сырья; измельчение и промывка; выделение дробленки; экструзия с получением гранул; обработка гранул в шнековом аппарате с целью увеличения вязкости продукта и обеспечения стерилизации продукта для возможности прямого контакта с пищевыми продуктами. Но для реализации этого процесса необходимы серьезные капитальные вложения, так как невозможно проведение данного процесса на стандартном оборудовании.

2.7   СЖИГАНИЕ

Сжигать целесообразно только некоторые типы пластмасс, потерявших свои свойства, для получения тепловой энергии. Например, тепловая электростанция в г. Вульвергемтоне (Великобритания) впервые в мире работает не на газе и не на мазуте, а на старых автомобильных покрышках. Осуществить этот уникальный проект, позволяющий обеспечить электроэнергией 25 тыс. жилых домов, помогло английское Управление по утилизации неископаемых видов топлива.

Сжигание некоторых видов полимеров сопровождается образованием токсичных газов: хлорида водорода, оксидов азота, аммиака, цианистых соединений и др., что вызывает необходимость мероприятий по защите атмосферного воздуха. Кроме того, экономическая эффективность этого процесса является наименьшей по сравнению с другими процессами утилизации пластмассовых отходов. Тем не менее, сравнительная простота организации сжигания определяет довольно широкое его распространение на практике.

2.8  ПЕРЕРАБОТКА ОТХОДОВ РТИ

Согласно новейшей статистике в Западной Европе ежегодно образуется около 2 млн. т изношенных шин, в России – приблизительно 1 млн. т шин и такое же количество старой резины дают резиновые технические изделия (РТИ). На предприятиях по производству шин и РТИ образуется много отходов, немалая доля которых повторно не используется, например отработанные бутиловые диафрагмы на шинных заводах, этиленпропиленовые отходы и т.п.

Ввиду большого количества старой резины по-прежнему доминирующее положение в утилизации занимает сжигание, в то время как материальная утилизация до сих пор составляет незначительную долю, несмотря на актуальность именно этой утилизации для улучшения экологии и сохранения сырьевых ресурсов. Материальная утилизация не получила широкого использования из-за больших энергозатрат и высокой стоимости получения тонкодисперсных резиновых порошков и регенератов.

Без экономического регулирования со стороны государства утилизация шин пока остается убыточной. В Российской Федерации отсутствует система сбора, депонирования и переработки изношенных шин и РТИ. Не разработаны методы правового и экономического регулирования и стимулирования решения этой проблемы. В большей части изношенные шины скапливаются на территориях автопарков или вывозятся в леса и карьеры. В настоящее время значительные количества ежегодно образующихся изношенных шин являются большой экологической проблемой для всех регионов страны.

Как показывает практика, на региональном уровне эту задачу решить очень трудно. В России должна быть разработана и внедрена Федеральная программа по утилизации шин и РТИ. В Программе необходимо заложить правовые и экономические механизмы, обеспечивающие движение изношенных шин по предлагаемой схеме.

В качестве экономического механизма работы системы по утилизации шин в нашей стране обсуждаются два принципиальных подхода:

  1. за утилизацию шин платит непосредственно их владелец –"загрязнитель платит";
  2. за утилизацию шин платит изготовитель или импортер шин – "производитель платит".

Принцип "загрязнитель платит" частично реализуется в таких регионах, как Татарстан, Москва, Санкт-Петербург и др. Реально оценивая уровень экологического и экономического нигилизма наших сограждан, успешное использование принципа "загрязнитель платит" можно считать бесперспективным.

Лучшим для нашей страны было бы введение принципа "производитель платит". Этот принцип успешно работает в Скандинавских странах. Например, его использование в Финляндии позволяет утилизировать более 90 % шин.

2.8.1  Дробление изношенных покрышек и камер

Начальная стадия получения регенерата существующими промышленными методами из изношенных резиновых изделий (покрышек, камер и др.) – их измельчение.

Измельчение шинных резин сопровождается некоторой деструкцией вулканизационной сетки резин, величина которой, оцениваемая по изменению степени равновесного набухания, при прочих равных условиях тем больше, чем меньше размер частиц получаемой резиновой крошки. Хлоро-форменный экстракт резин при этом изменяется крайне незначительно. Одновременно происходит также деструкция углеродных структур. Дробление резин, содержащих активный технический углерод, сопровождается некоторой деструкцией цепочечных структур по связям углерод – углерод; в случае малоактивного технического углерода (термического) число контактов между частицами углерода несколько возрастает. В общем изменения вулканизационной сетки и углеродных структур резин при дроблении должны, как и в случае любого механохимического процесса, зависеть от типа полимера, природы и количества наполнителя, содержащегося в резине, природы поперечных связей и густоты вулканизационной сетки, температуры процесса, а также степени измельчения резины и типа применяемого при этом оборудования. Размер частиц получаемой резиновой крошки определяется методом девулканизации резины, типом измельчаемой резины и требованиями к качеству конечного продукта – регенерата.

Информация о работе Вторичная переработка пластмасс с целью повышения экономии и возврата сырьевых ресурсов в производственный процесс