Автор работы: Пользователь скрыл имя, 29 Апреля 2013 в 07:47, контрольная работа
В зависимости от количества факторов, включенных в уравнение регрессии, принято различать простую (парную) и множественную регрессии. Любое эконометрическое исследование начинается со спецификации модели, т. е. с формулировки вида модели, исходя из соответствующей теории связи между переменными. Иными словами, исследование начинается с теории, устанавливающей связь между явлениями.
Описанная только что наиболее общая модель — система взаимозависимых уравнений — получила название системы совместных одновременных уравнений. Эта структурная форма модели подчеркивает, что в такой системе одни и те же переменные одновременно рассматриваются как зависимые в одних уравнениях и независимые — в других. Важным примером такой модели служит следующая простая модель динамики и заработной платы:
.
В этой модели левые части первого и второго уравнений системы — это темп изменения месячной заработной платы и темп изменения цен. Переменные в правых частях уравнений: x1 — процент безработных, x2 — темп изменения постоянного капитала, x3 — темп изменения цен на импорт сырья.
Что касается структурной
модели, то она позволяет увидеть
влияние изменений любой
Таким образом, существуют две различные формы моделей, которые описывают одну ситуацию, но имеют определенные преимущества в контексте решения различных проблем, различных аспектов этой ситуации. Следовательно, нужно уметь устанавливать и поддерживать должное соответствие между этими двумя формами моделей. Так, при переходе от структурной формы модели к приведенной возникает проблема идентификации — единственности соответствия между приведенной и структурной формами модели. По возможности идентифицируемости структурные модели делятся на три вида.
Модель идентифицируема, если все структурные коэффициенты модели однозначно определяются по коэффициентам приведенной формы модели. При этом число параметров в обеих формах модели одинаково.
Модель неидентифицируема, если число приведенных коэффициентов меньше числа структурных коэффициентов. Тогда структурные коэффициенты не могут быть определены и оценены через коэффициенты приведенной формы модели.
Модель сверхидентифицируема, если число приведенных коэффициентов больше числа структурных коэффициентов. В таком случае на основе коэффициентов приведенной формы можно получить два или более значений одного структурного коэффициента. Сверхидентифицируемая модель, в отличие от неидентифицируемой, практически всегда решаема, однако для этого используются специальные методы вычисления параметров
Следует еще раз подчеркнуть, что деление переменных на эндогенные и экзогенные зависит от содержания модели, а не от ее формальных особенностей. Именно интерпретация определяет, какие переменные считать эндогенными, а какие — экзогенными. При этом предполагается, что экзогенные переменные некоррелированы с ошибкой для каждого уравнения. Тогда как экзогенные переменные (они стоят в правых частях уравнений), как правило, имеют ненулевую корреляцию с ошибкой в соответствующем уравнении. Для приведенной формы уравнений (в отличие от структурной формы) в каждом уравнении экзогенная переменная некоррелирована с ошибкой. Именно поэтому МНК для ее параметров дает состоятельные оценки. А сам такой способ оценки параметров (уже структурных коэффициентов) с помощью оценок коэффициентов приведенной формы и МНК называется косвенным методом наименьших квадратов. Использование косвенного метода наименьших квадратов заключается просто в составлении приведенной формы для определения численных значений параметров каждого уравнения посредством обычного МНК. После этого с помощью алгебраических преобразований переходят опять к исходной структурной форме модели и получают тем самым численные оценки структурных параметров.