Модель парной регрессии

Автор работы: Пользователь скрыл имя, 29 Апреля 2013 в 07:47, контрольная работа

Краткое описание

В зависимости от количества факторов, включенных в уравнение регрессии, принято различать простую (парную) и множественную регрессии. Любое эконометрическое исследование начинается со спецификации модели, т. е. с формулировки вида модели, исходя из соответствующей теории связи между переменными. Иными словами, исследование начинается с теории, устанавливающей связь между явлениями.

Вложенные файлы: 1 файл

эконометрика.docx

— 132.90 Кб (Скачать файл)

Описанная только что наиболее общая модель — система взаимозависимых  уравнений — получила название системы совместных одновременных уравнений. Эта структурная форма модели подчеркивает, что в такой системе одни и те же переменные одновременно рассматриваются как зависимые в одних уравнениях и независимые — в других. Важным примером такой модели служит следующая простая модель динамики и заработной платы:

.

В этой модели левые части  первого и второго уравнений  системы — это темп изменения  месячной заработной платы и темп изменения цен. Переменные в правых частях уравнений: x1 — процент безработных, x2 — темп изменения постоянного капитала, x3 — темп изменения цен на импорт сырья.

Что касается структурной  модели, то она позволяет увидеть  влияние изменений любой экзогенной переменной на значения эндогенной переменной. Поэтому следует в качестве экзогенных переменных выбирать такие, которые могут быть объектом регулирования. Тогда меняя их и управляя ими, можно заранее иметь целевые значения эндогенных переменные.

Таким образом, существуют две  различные формы моделей, которые  описывают одну ситуацию, но имеют  определенные преимущества в контексте  решения различных проблем, различных  аспектов этой ситуации. Следовательно, нужно уметь устанавливать и поддерживать должное соответствие между этими двумя формами моделей. Так, при переходе от структурной формы модели к приведенной возникает проблема идентификации — единственности соответствия между приведенной и структурной формами модели. По возможности идентифицируемости структурные модели делятся на три вида.

Модель идентифицируема, если все структурные коэффициенты модели однозначно определяются по коэффициентам приведенной формы модели. При этом число параметров в обеих формах модели одинаково.

Модель неидентифицируема, если число приведенных коэффициентов меньше числа структурных коэффициентов. Тогда структурные коэффициенты не могут быть определены и оценены через коэффициенты приведенной формы модели.

Модель сверхидентифицируема, если число приведенных коэффициентов больше числа структурных коэффициентов. В таком случае на основе коэффициентов приведенной формы можно получить два или более значений одного структурного коэффициента. Сверхидентифицируемая модель, в отличие от неидентифицируемой, практически всегда решаема, однако для этого используются специальные методы вычисления параметров

Следует еще раз подчеркнуть, что деление переменных на эндогенные и экзогенные зависит от содержания модели, а не от ее формальных особенностей. Именно интерпретация определяет, какие переменные считать эндогенными, а какие — экзогенными. При этом предполагается, что экзогенные переменные некоррелированы с ошибкой для каждого уравнения. Тогда как экзогенные переменные (они стоят в правых частях уравнений), как правило, имеют ненулевую корреляцию с ошибкой в соответствующем уравнении. Для приведенной формы уравнений (в отличие от структурной формы) в каждом уравнении экзогенная переменная некоррелирована с ошибкой. Именно поэтому МНК для ее параметров дает состоятельные оценки. А сам такой способ оценки параметров (уже структурных коэффициентов) с помощью оценок коэффициентов приведенной формы и МНК называется косвенным методом наименьших квадратов. Использование косвенного метода наименьших квадратов заключается просто в составлении приведенной формы для определения численных значений параметров каждого уравнения посредством обычного МНК. После этого с помощью алгебраических преобразований переходят опять к исходной структурной форме модели и получают тем самым численные оценки структурных параметров.


Информация о работе Модель парной регрессии