Производственные функции

Автор работы: Пользователь скрыл имя, 15 Апреля 2012 в 22:37, лекция

Краткое описание

В условиях современного общества ни один человек не может потреблять только то, что он сам производит. Для наиболее полного удовлетворения своих потребностей люди вынуждены обмениваться тем, что они производят. Без постоянного производства благ не было бы потребления. Поэтому большой интерес представляет анализ закономерностей, действующих в процессе производства благ, которые формируют в дальнейшем их предложение на рынке.

Содержание

Введение
1. Понятие производственной функции одной переменной
2. Производственные функции нескольких переменных
3. Свойства и основные характеристики производственных функций
4. Примеры использования производственных функций в задачах экономического анализа, прогнозирования и планирования
Основные выводы
Тесты контроля усвоенного материала
Литература

Вложенные файлы: 1 файл

PrFunk.doc

— 232.00 Кб (Скачать файл)

6)     при росте одного ресурса предельная эффективность другого ресурса возрастает, т.е. если x>0, то ;

7)     ПФ является однородной функцией, т.е. ; при р>1 имеем рост эффективности производства от роста масштаба производства; при р<1 имеем падение эффективности производства от роста масштаба производства; при р=1 имеем постоянную эффективность производства при росте его масштаба.

Подобно линии уровня целевой функции оптимизационной задачи, для ПФ также имеет место аналогичное понятие. Линия уровня ПФ – это  множество точек, на котором ПФ принимает постоянное значение. Иногда линии уровня называют изоквантами ПФ. Возрастание одного фактора и уменьшение другого могут происходить таким образом, что общий объем производства остается на прежнем уровне. Изокванты как раз и определяют все возможные комбинации факторов производства, необходимых для достижения заданного уровня продукции.

     

Рис. 2.

Из рисунка 2 видно, что вдоль изокванты выпуск продукции постоянный, то есть прирост выпуска отсутствует. Математически это означает, что полный дифференциал ПФ на изокванте равен нулю:

.

              Изокванты обладают следующими свойствами:

  1. Изокванты не пересекаются.
  2. Большей удаленности изокванты от начала координат соответствует больший уровень выпускаемой продукции.
  3. Изокванты - понижающиеся кривые, имеют отрицательный наклон.

Изокванты являются подобием кривых безразличия с той лишь разницей, что они отражают ситуацию не в сфере потребления, а в сфере производства.

Отрицательный наклон изоквант объясняется тем, что увеличение использования одного фактора при определенном объеме выпуска продукта всегда будет сопровождаться уменьшением количества другого фактора. Крутизна наклона изокванты характеризуется предельной нормой технологического замещения факторов производства (MRTS). Рассмотрим эту величину на примере двухфакторной производственной функции Q(y,x). Предельная норма технологического замещения измеряется соотношением изменения фактора y к изменению фактора х. Поскольку замена факторов происходит в обратном отношении, то математическое выражение показателя MRTS берется со знаком минус:

.

На рисунке 3 изображена одна из изоквант ПФ Q(y,x)

Рис. 3.

Если взять какую-либо точку на этой изокванте, например, точку А и провести к ней касательную КМ, то тангенс угла даст нам значение MRTS:

.

Можно отметить, что в верхней части изокванты угол будет достаточно велик, что говорит о том, что для изменения фактора х на единицу требуются значительные изменения фактора y. Следовательно, в этой части кривой значение MRTS будет велико. По мере движения вниз по изокванте значение предельной нормы технологического замещения будет постепенно убывать. Это означает, что для увеличения фактора х на единицу потребуется незначительное уменьшение фактора y. При полной заменяемости факторов изокванты из кривых преобразуются в прямые.

Рис. 4.

Один из наиболее интересных примеров использования изоквант ПФ – это исследование эффекта масштаба производства (см. свойство 7).

Что эффективнее для экономики: один крупный завод или несколько мелких предприятий? Ответ на этот вопрос не так прост. Плановая экономика отвечала на него однозначно, отдавая приоритет промышленным гигантам. С переходом к рыночной экономике началось повсеместное разукрупнение созданных ранее объединений. Где же золотая середина? Доказательный ответ на этот вопрос можно получить, исследовав эффект масштаба производства.

Представим, что на обувной фабрике руководство приняло решение значительную часть полученной прибыли направить на развитие производства с целью увеличения объемов производимой продукции. Допустим, что капитал (оборудование, станки, производственные площади) увеличен в два раза,. Численность работников увеличилась в такой же пропорции. Возникает вопрос, что произойдет в таком случае с объемом выпускаемой продукции?

Из анализа рисунка 5

Рис. 5.

следуют три варианта ответа:

- количество продукции возрастет в два раза (постоянная отдача от масштаба);

- увеличится более, чем в два раза (возрастающая отдача от масштаба);

- увеличится, но меньше, чем в два раза (убывающая отдача от масштаба).

              Постоянная отдача от масштаба производства объясняется однородностью переменных факторов. При пропорциональном увеличении капитала и труда на таком производстве средняя и предельная производительность этих факторов останется неизменной. В таком случае безразлично, будет ли работать одно крупное предприятие или вместо него будет создано два мелких.

              При убывающей отдаче от масштаба невыгодно создавать крупное производство. Причиной низкой эффективности в таком случае, как правило, являются дополнительные затраты, связанные с управлением подобным производством, сложности координации крупного производства.

              Возрастающая отдача от масштаба, как правило, характерна, для тех производств, где возможна широкая автоматизация производственных процессов, применение поточных и конвейерных линий. Но с тенденцией возрастающей отдачи от масштаба нужно быть очень осторожным. Рано или поздно она превращается в постоянную, а затем и в убывающую отдачу от масштаба.

              Остановимся на некоторых характеристиках производственных функций, наиболее важных для экономического анализа. Рассмотрим их на примере ПФ вида .

              Как уже было отмечено выше, отношение (i=1,2) называется средней производительностью i-го ресурса или средним выпуском по i-му ресурсу. Первая частная производная ПФ (i=1,2) называется предельной производительностью i-го ресурса или предельным выпуском по i-му ресурсу. Эту предельную величину иногда интерпретируют, используя близкое к ней отношение малых конечных величин . Приближенно она показывает, на сколько единиц увеличится объем выпуска y, если объем затрат i-го ресурса возрастет на одну (достаточно малую) единицу при неизменных объемах другого затрачиваемого ресурса.Сумма +=Е называется эластичностью производства. Например, для ПФКД =, = и  Е=+=+.

4.      Примеры использования производственных функций в задачах экономического анализа, прогнозирования и планирования

Производственные функции позволяют количественно проанализировать важнейшие экономические зависимости в сфере производства. Они дают возможность оценить среднюю и предельную эффективность различных ресурсов производства, эластичность выпуска по различным ресурсам, предельные нормы замещения ресурсов, эффект от масштаба производства и многое другое.

Пример 1. Предположим, что процесс производства описывается с помощью функции выпуска

.

Оценим основные характеристики этой функции для способа производства, при котором К=400, а L=200.

              Решение.

1)     Предельные производительности факторов.

Для расчета этих величин определим частные производные функции по каждому из факторов:

.

Таким образом, предельная производительность фактора труд в четыре раза превышает аналогичную величину для фактора капитал.

2)     Эластичность производства.

Эластичность производства определяется суммой эластичностей выпуска по каждому фактору, то есть

.

3)     Предельная норма замещения ресурсов.

Выше в тексте эта величина обозначалась и равнялась . Таким образом, в нашем примере

=-0,4/0,1=-4,

то есть для замещения единицы труда в этой точке необходимы четыре единицы ресурсов капитала.

4)     Уравнение изокванты.

Для определения формы изокванты необходимо зафиксировать значение объема выпуска (Y). Пусть, например, Y=500. Для удобства примем L функцией К, тогда уравнение изокванты примет вид

.

Предельная норма замещения ресурсов определяет тангенс угла наклона касательной к изокванте в соответствующей точке. Используя результаты п. 3, можно сказать, что точка касания расположена в верхней части изокваны, так как угол достаточно велик.

              Пример 2. Рассмотрим функцию Кобба-Дугласа в общем виде

.

Предположим, что K и L удваиваются. Таким образом, новый уровень выпуска (Y) запишется следующим образом:

.

Определим эффект от масштаба производства в случаях, если >1, =1 и <1.

              Если, например, =1,2, а =2,3, то Y увеличивается больше, чем в два раза; если =1, а =2, то удвоение К  и L приводит к удвоению Y; если =0,8, а =1,74, то Y увеличивается меньше, чем в два раза.

              Таким образом, в примере 1 мог наблюдаться постоянный эффект от  масштаба производства.

 

Историческая справка

              В своей первой статье Ч.Кобб и П.Дуглас изначально предполагали постоянную отдачу от масштаба. Впоследствии они ослабили это допущение, предпочитая оценивать степень отдачи от масштаба производства.

 

              Основная задача производственных функций все же – дать исходный материал для наиболее эффективных управленческих решений. Проиллюстрируем вопрос принятия оптимальных решений на основе использования производственных функций.

 

 

Литература

1.       Доугерти К. Введение в эконометрику. – М.: Финансы и статистика, 2001.

2.       Замков О.О., Толстопятенко А.В., Черемных Ю.П. Математические методы в экономике: Учебник. – М.: Изд. «ДИС», 1997.

3.       Курс экономической теории: учебник. – Киров: «АСА», 1999.

4.       Микроэкономика/ Под ред. Проф. Яковлевой Е.Б. – М.: СПб. Поиск, 2002.

5.       Мировая экономика. Варианты аудиторных работ для преподавателей. – М.: ВЗФЭИ, 2001.

6.       Овчинников Г.П.. Микроэкономика. – Санкт-Петербург: Изд-во им. Володарского, 1997.

7.       Политическая экономия; экономическая энциклопедия. – М.: Изд. «Сов. Энциклопедия», 1979.

 



Информация о работе Производственные функции