Технология производства холоднокатоной динамной стали

Автор работы: Пользователь скрыл имя, 03 Ноября 2013 в 20:32, реферат

Краткое описание

Применение холоднокатаной динамной стали в рулонах позволяет значительно сократить расход металла на изготовление деталей машин и аппаратов в результате рационального раскроя полосы и организовать их производство на высокопроизводительных автоматических и полуавтоматических линиях.
Более высокое качество поверхности холоднокатаной динамной стали по сравнению с горячекатаной обеспечивается прокаткой рулонов протравленного подката на современных непрерывных или реверсивных станах холодной прокатки, в то время как горячекатаная листовая динамная сталь прокатывается пакетами на клетях горячей прокатки устаревшей конструкции с применением тяжелого ручного труда.

Вложенные файлы: 1 файл

характеристика ПДС.docx

— 22.02 Кб (Скачать файл)

   Технология производства холоднокатоной динамной стали 

Развитие производства электротехнических сталей характеризуется увеличением  выпуска холоднокатаной динамной стали и сокращением производства горячекатаной динамной стали. 
У холоднокатаной динамной стали по сравнению с горячекатаной значительно точнее размеры толщины, более высокая планшетность, лучшее состояние поверхности, отсутствует окалина. Более высокие параметры качества холоднокатаной динамной стали при изготовлении электромашин позволяют получить более высокий коэффициент заполнения, обеспечивающий значительную экономию электроэнергии и возможность в ряде случаев увеличить мощность электромашин при сохранении их масс и габаритов. Этому способствует незначительная анизотропия магнитных свойств холоднокатаной стали, т. е. разница в магнитных свойствах листов в направлении прокатки и в перпендикулярном направлении. 
Применение холоднокатаной динамной стали в рулонах позволяет значительно сократить расход металла на изготовление деталей машин и аппаратов в результате рационального раскроя полосы и организовать их производство на высокопроизводительных автоматических и полуавтоматических линиях. 
Более высокое качество поверхности холоднокатаной динамной стали по сравнению с горячекатаной обеспечивается прокаткой рулонов протравленного подката на современных непрерывных или реверсивных станах холодной прокатки, в то время как горячекатаная листовая динамная сталь прокатывается пакетами на клетях горячей прокатки устаревшей конструкции с применением тяжелого ручного труда. 
Прокатка на станах горячей и холодной прокатки рулонов, кроме значительного увеличения производительности по сравнению с листовой прокаткой горячекатаного металла, способствует получению проката с более стабильными свойствами, так как создаются постоянные условия при обработке большого количества металла на различных технологических операциях. 
 
ПЛАСТИЧНОСТЬ И МЕХАНИЧЕСКИЕ СВОЙСТВА СТАЛИ 
Листы холоднокатаной малотекстурованной стали при испытании на хрупкость должны выдерживать не менее 10 гибов для сталей Э1100, Э1200 и Э1300 и не менее 5 гибов для сталей Э3100, Э3200. 
Число гибов, которое выдерживают образцы этой стали, превышает приведенные нормы. 
Ударная вязкость стали с 1 % Si равна 12 кгс м/см2. Механические свойства электротехнической стали (в отожженном состоянии) зависят от содержания кремния . 
Высокая пластичность холоднокатаной динамной стали с содержанием до 2% Si определяет возможность прокатывать эту сталь на высокопроизводительных непрерывных и реверсивных станах холодной прокатки, без существенного снижения их производительности по сравнению с прокаткой малоуглеродистой стали. 
Технология производства холоднокатаной динамной стали должна обеспечивать получение листовой и рулонной стали: а) с минимально возможными удельными потерями и максимально возможной индукцией; б) с минимально возможной анизотропией магнитных свойств; в) пластичность, точность прокатки и чистота поверхности должны соответствовать заданным стандартами или техническими условиями. 
Решающее влияние на магнитные свойства стали оказывает химический состав. Сейчас динамную сталь выплавляют с 1,3- 1,8% Si. Выплавка стали с содержанием кремния ближе к верхнему пределу позволяет снизить удельные потери на 0,1-0,2 Вт/кг. При повышении содержания кремния в стали увеличивается ее способность к текстурообразованию и, следовательно, к увеличению анизотропии. Чем меньше газов и неметаллических включений содержит динамная сталь, тем лучше ее магнитные свойства. Следует, поэтому рекомендовать вакуумирование жидкой стали в ковше, что позволяет снизить в ней количество углерода и уменьшить содержание газов. 
Разливка динамной стали в современных цехах осуществляется в крупные слитки массой 5-12 т. Возможно применение слитков массой до 24 т. 
Подготовка поверхности слитков, слябов и подката динамной стали не отличается от принятой в производстве углеродистой стали. 
Существенное влияние на магнитные свойства холоднокатаной динамной стали оказывает технология ее передела в цехах холодной прокатки.  
 
 
 
Протравленные рулоны после обрезки кромок и промасливания прокатывают на заданную толщину за один пропуск через стан. 
Высокая пластичность динамной стали и относительно небольшое сопротивление деформации позволяют холодную прокатку этой стали производить с суммарным обжатием до 80%, без промежуточного отжига. 
Холодная прокатка динамной стали с содержанием кремния до 2% производится из рулонного горячекатаного подката толщиной 2-2,5 мм в один передел. В табл. 96 приведена схема прокатки рулонной динамной стали с начальной толщины 2 мм до 0,5 мм на пятиклетевом стане холодной прокатки. 
Замерами энергосиловых параметров работы пятиклетевого непрерывного стана 1200 при прокатке малоуглеродистой стали (08кп, СтЗ) и динамной стали установлено, что при прокатке последней при прочих равных условиях удельный расход электро-энергии составлял 123-128 кВт-ч/т, а при прокатке малоуглеродистой стали 90-115 кВт-ч/т, т. е. в 1,1-1,4 раза больше. Решающее влияние на магнитные свойства динамной стали имеет со, держание углерода, поэтому наряду с мерами, принимаемыми в сталеплавильных цехах по снижению содержания углерода в слитках, высокие магнитные свойства динамной стали обеспечиваются специальной обезуглероживающей обработкой. Эта обработка может быть осуществлена при обезуглероживающем отжиге горячекатаных рулонов в непрерывных агрегатах, где отжиг производится в обезуглероживающей среде, подобной применяемым в производстве холоднокатаной трансформаторной стали. 
Обезуглероживающая термическая обработка усиливает анизотропию магнитных свойств динамной стали, что видно из данных  

Для окончательной термической  обработки - отжига холоднокатаной динамной стали - могут применяться колпаковые и проходные термические печи. При термической обработке стопы рулонов в колпаковых печах (температура отжига 880-940° С, выдержка 12 ч, охлаждение под колпаком до 650° С, а затем под муфелем до 200° С) обеспечиваются заданные магнитные свойства, но при этом в результате некоторой деформации части витков рулонов отожженные рулоны следует подвергать дрессировке. 
Для снятия напряжений в металле после дрессировки проводят повторный отжиг металла. Это связано с дополнительной загрузкой прокатного оборудования, отжигательных печей и с нерациональным удлинением технологического процесса производства стали. 
Второй отжиг рулонов после дрессировки осуществляли при 750° С и выдержке 12 ч с последующим охлаждением под муфелем до 200° С. В связи с этим в новых цехах для производства холоднокатаной динамной стали термическая обработка рулонов после холодной прокатки осуществляется в проходных печах. 
Наряду с листовой динамной сталью массового применения для изготовления некоторых крупных электромашин необходима сталь с еще меньшими удельными потерями. 
При одинаковой толщине листа и одинаковом химическом составе наибольшее влияние на удельные потери оказывает величина зерна (чем оно крупнее, тем ниже удельные потери). 
Рост зерна при отжиге в значительной степени зависит от величины обжатия полосы на последнем переделе при холодной прокатке. Наиболее крупные зерна вырастают в случае применения так называемых "критических обжатий", величина которых для динамной стали находится в пределах 8-10%. 
Повышение температуры отжига также способствует росту зерна, уменьшает остаточные напряжения и искажения решетки, поэтому по мере повышения температуры нагрева при отжиге коэрцитивная сила и удельные потери снижаются. 
Однако при этом следует иметь в виду, что в стали с содержанием до 2,0% Si даже при минимальном содержании углерода при 950-1000° С происходит фазовое превращение ее во всем объеме. Переход через критические точки при нагреве и охлаждении обычно сопровождается измельчением зерен. 
При отжиге в проходной печи лучшие магнитные свойства получаются при отжиге ниже температуры фазового превращения. Повышение температуры отжига с 960 до 1100° С приводит к увеличению удельных потерь на 3-5%. Снижение содержания углерода с 0,050 до 0,020% уменьшает удельные потери на 20-25%. Эффективным мероприятием в отношении снижения удельных потерь является применение прокатки с небольшим суммарным обжатием (критическая деформация). Наилучшие результаты получаются при сочетании обезуглероживания и критической деформации. 
На электротехническую тонколистовую и ленточную сталь ГОСТ предусматривает выпуск стали трех классов, определяющихся условиями производства - горячекатаная изотропная (1-й класс), холоднокатаная изотропная (2-й класс) и холоднокатаная анизотропная (3-й класс). В каждом из указанных классов оговаривается содержание кремния, которое фиксируется соответствующим шифром. Так, например, в холоднокатаной изотропной стали цифровой шифр для стали с различным содержанием кремния будет: 
Цифровой шифр....... 1 2 3 4 5 
Содержание Si, %.....до 0,4 0,4-0,8 0,8-1,2 1,8-2,8 2,8-3,8 
 
Холоднокатаная анизотропная сталь изготовляется только с содержанием кремния в пределах 2,8-3,8% и имеет один цифровой шифр - 4. 
Для каждой из включенных в стандарт марок стали оговорены магнитные характеристики, определяющие качество листовой и ленточной стали по величине удельных потерь и индукции в определенной толщине проката, обозначаемые соответствующим цифровым индексом. Комплекс перечисленных выше характеристик электротехнической стали, определяющих структурное состояние, содержание кремния, характер и уровень магнитных свойств, обозначается цифрой из четырех знаков: первый знак - класс по структурному состоянию; второй знак - содержание кремния; третий знак - основная нормируемая характеристика; четвертый- уровень магнитных нормируемых характеристик для соответствующей группы сталей. Для примера приведено условное обозначение холоднокатаной листовой анизотропной стали с удельными потерями Р1,5/50 не более 1,0 Вт/кг-3415. Стандарт оговаривает также разделение электротехнической стали на листовую горячекатаную, листовую холоднокатаную и ленту холоднокатаную, а также для холоднокатаной стали с поверхностью, покрытой электроизоляционным покрытием и без покрытия. В зависимости от точности размеров по толщине прокат может поставляться нормальной точности (Н) и повышенной точности (П). Предусматривается, в соответствии с требованиями потребителя, поставка электротехнической листовой и ленточной стали с термической обработкой и без нее. Листовая холоднокатаная сталь поставляется листами или рулонами толщиной 0,35; 0,5 и 0,65мм, шириной 750, 900 и 1000 мм и длиной листов для соответствующей толщины и ширины 1500-2000 мм. Лента поставляется той же толщины и шириной от 170 мм до 500 мм- 
Горячекатаная листовая сталь по ГОСТу может изготовляться толщиной в пределах 0,1-1 мм, шириной 500-1000 мм и длиной для соответствующих толщины и ширины в пределах 600-2000 мм. 
Допуски по толщине листового и ленточного проката определяются в зависимости от степени точности и ширины проката. Так, например, холоднокатаная листовая сталь толщиной 0,35 мм при ширине листа 750 мм должна иметь предельные отклонения по толщине: для проката нормальной точности ±0,03 мм, а для проката повышенной точности ±0,02 мм. Стандарт включает также параметры качества по точности размеров ширины и длины, по плоскостности, ребровой кривизне для ленты и рулонов. Для соответствующих классов стали оговорены требования по качеству поверхности. Достижение установленных стандартом требований к качеству соответствующих видов электротехнической стали определяют специфические условия и технологию производства этой стали.


Информация о работе Технология производства холоднокатоной динамной стали