Автор работы: Пользователь скрыл имя, 30 Января 2014 в 18:44, курсовая работа
Определение. Случайным процессом X(t) называется процесс, значение которого при любом значении аргумента t является случайной величиной.
Другими словами, случайный процесс представляет собой функцию, которая в результате испытания может принять тот или иной конкретный вид, неизвестный заранее. При фиксированном t = t0 , X (t0) представляет собой обычную случайную величину, т.е. сечение случайного процесса в момент t0.
Естественно, по каждой строке ∑ pij = 1, i= 1, 2, …, m.
Обозначим pij(n) – вероятностью того, что в результате n шагов система перейдёт из состояния i в состояние j. При этом при i= 1 имеем вероятности перехода, образующие матрицу P1, т.е.pij(1) =pij
Необходимо, зная вероятности перехода pij, найти pij(n) – вероятности перехода системы из состояния I в состояние j за n шагов. С этой целью будем рассматривать промежуточное (между I и j) состояние r, т.е. будем считать, что из первоначального состояния I за k шагов система перейдёт в промежуточное состояние r с вероятностью pir(k), после чего за оставшиеся n-k шагов из промежуточного состояния r она перейдёт в конечное состояние j с вероятностью prj(n-k). Тогда по формуле полной вероятности:
Pij(n) = ∑ pir (k) prj (n-k) – равенство Маркова.
Убедимся в том, что, зная все вероятности перехода pij = pij(1), т.е. матрицу P1 перехода из состояния в состояние за один шаг, можно найти вероятность pij(2), т.е. матрицу P2 перехода из состояния в состояние за два шага. А зная матрицу P2, - найти матрицу P3 перехода из состояния в состояние за три шага, и т.д.
Действительно, полагая n = 2 в формуле Pij(n) = ∑ pir (k) prj (n-k), т.е. k=1 (промежуточное между шагами состояние), получим
Pij(2) = ∑ pir(1)prj (2-1) = ∑ pir prj
Полученное равенство означает, что P2 =P1P1= P21
Полагая n = 3, k = 2, аналогично получим P3 = P1P2 = P1P12 = P13, а в общем случае Pn = P1n
Пример
Совокупность семей некоторого региона можно разделить на три группы:
Проведённое статистическое обследование показало, что матрица перехода за интервал в один год имеет вид:
(В матрице P1 элемент р31 = 1 означает вероятность того, что семья, имеющая автомобиль, также будет его иметь, а, например, элемент р23 = 0,3 – вероятность того, что семья, не имевшая автомобиля, но решившая его приобрести, осуществит своё намерение в следующем году, и т.д.)
Найти вероятность того, что:
РЕШЕНИЕ: Найдём матрицу перехода Р2 через два года:
То есть искомые в примере
1) и 2) вероятности равны
р11 =0,64, р23 =0,51
На практике часто приходится сталкиваться с системами, предназначенными для многоразового использования при решении однотипных задач. Возникающие при этом процессы получили название процессов обслуживания, а системы — систем массового обслуживания (СМО). Примерами таких систем являются телефонные системы, ремонтные мастерские, вычислительные комплексы, билетные кассы, магазины, парикмахерские и т.п.
Каждая СМО состоит из определенного числа обслуживающих единиц (приборов, устройств, пунктов, станций), которые будем называть каналами обслуживания. Каналами могут быть линии связи, рабочие точки, вычислительные машины, продавцы и др. По числу каналов СМО подразделяют на: одноканальные и многоканальные.
Заявки поступают в СМО обычно не регулярно, а случайно, образуя так называемый случайный поток заявок (требований). Обслуживание заявок, вообще говоря, также продолжается какое-то случайное время. Случайный характер потока заявок и времени обслуживания приводит к тому, что СМО оказывается загруженной неравномерно: в какие-то периоды времени скапливается очень большое количество заявок (они либо становятся в очередь, либо покидают СМО необслуженными), в другие же периоды СМО работает с недогрузкой или простаивает.
Предметом теории массового обслуживания является построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, характер потока заявок и т.п.) с показателями эффективности СМО, описывающими ее способность справляться с потоками заявок.
В качестве показателей эффективности СМО используются: среднее число заявок, обслуживаемых в единицу времени; среднее число заявок в очереди; среднее время ожидания обслуживания; вероятность отказа в обслуживании без ожидания; вероятность того, что число заявок в очереди превысит определенное значение, и т.п.
СМО делят на два основных типа (класса): СМО с отказами и СМО с ожиданием (очередью). В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем процессе обслуживания не участвует (например, заявка на телефонный разговор в момент, когда все каналы заняты, получает отказ и покидает СМО необслуженной). В СМО с ожиданием заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь на обслуживание.
СМО с ожиданием подразделяются на разные виды в зависимости от того, как организована очередь: с ограниченной или неограниченной длиной очереди, с ограниченным временем ожидания и т.п.
Процесс работы СМО представляет собой случайный процесс с дискретными состояниями и непрерывным временем. Математический анализ работы СМО существенно упрощается, если процесс этой работы — марковский.
Для математического описания марковского случайного процесса с дискретными состояниями и непрерывным временем, протекающего в СМО, познакомимся с одним из важных понятий теории вероятностей — понятием потока событий.
В качестве показателей эффективности СМО с отказами будем рассматривать:\
А — абсолютную пропускную способность СМО, т.е. среднее число заявок, обслуживаемых в единицу времени;
Q — относительную пропускную способность, т.е. среднюю долю пришедших заявок, обслуживаемых системой;
Pотк. — вероятность отказа, т.е. того, что заявка покинет СМО необслуженной;
— среднее число занятых каналов (для многоканальной системы).
Одноканальная система с отказами.
Рассмотрим задачу. Имеется один канал, на который поступает поток заявок с интенсивностью λ. Поток обслуживаний имеет интенсивность μ1. Найти предельные вероятности состояний системы и показатели ее эффективности.
Система S (СМО) имеет два состояния: S0 — канал свободен, S1 — канал занят. Размеченный граф состояний представлен на рис.
В предельном, стационарном режиме система алгебраических уравнений для вероятностей состояний имеет вид.
λp0= µp1
µp1= λp0
т.е. система вырождается
в одно уравнение. Учитывая нормировочное
условие p0+p1=1,найдем из предельные
вероятности состояний
которые выражают среднее относительное время пребывания системы в состоянии S0 (когда канал свободен) и S1 (когда канал занят), т.е. определяют соответственно относительную пропускную способность Q системы и вероятность отказа Pотк:
Абсолютную пропускную способность
найдем, умножив относительную
Задача. Известно, что заявки на телефонные переговоры в телевизионном ателье поступают с интенсивностью λ, равной 90 заявок в час, а средняя продолжительность разговора по телефону об.=2 мин. Определить показатели эффективности работы СМО (телефонной связи) при наличии одного телефонного номера.
Решение. Имеем λ=90 (1/ч), об.=2 мин. Интенсивность потока обслуживании μ=1/ об=1/2=0,5 (1/мин)=30 (1/ч). Относительная пропускная способность СМО (Q=30/(90+30)=0,25, т.е. в среднем только 25% поступающих заявок осуществят переговоры по телефону. Соответственно вероятность отказа в обслуживании составит Ротк.=0,75. Абсолютная пропускная способность СМО ,A=90∙0,25=22,5, т.е. в среднем в час будут обслужены 22,5 заявки на переговоры. Очевидно, что при наличии только одного телефонного номера СМО будет плохо справляться с потоком заявок.
Многоканальная система с отказами.
Рассмотрим классическую задач
Поток заявок последовательно переводит систему из любого левого состояния в соседнее правое с одной и той же интенсивностью λ. Интенсивность же потока обслуживаний, переводящих систему из любого правого состояния в соседнее левое состояние, постоянно меняется в зависимости от состояния. Действительно, если СМО находится в состоянии S2 (два канала заняты), то она может перейти в состояние. S1 (один канал занят), когда закончит обслуживание либо первый, либо второй канал, т.е. суммарная интенсивность их потоков обслуживании будет 2μ. Аналогично суммарный поток обслуживаний, переводящий СМО из состояния S3 (три канала заняты) в S2. будет иметь интенсивность Зμ, т.е. может освободиться любой из трех каналов и т.д.
Вероятность отказа СМО есть предельная вероятность того, что все n каналов системы будут заняты, т.е.
Относительная пропускная способность — вероятность того, что заявка будет обслужена:
Абсолютная пропускная способность:
Среднее число занятых каналов есть математическое ожидание числа занятых каналов:
где pk — предельные вероятности состояний.
Однако среднее число занятых каналов можно найти проще, если учесть, что абсолютная пропускная способность системы А есть не что иное, как интенсивность потока обслуженных системой заявок (в единицу времени). Так как каждый занятый канал обслуживает в среднем μ заявок (в единицу времени), то среднее число занятых каналов
Или
Информация о работе Элементы теории случайных процессов и теории массового обслуживания