Контрольная работа по "Эконометрии"

Автор работы: Пользователь скрыл имя, 01 Июня 2012 в 01:29, контрольная работа

Краткое описание

3. Дать характеристику основным видам моделей.
29. Каков алгоритм решения задач при постановке многоканальной системы массового обслуживания с потерями?

Вложенные файлы: 1 файл

эмм 52.doc

— 92.00 Кб (Скачать файл)


3,18,29,40,49

 

3. Дать характеристику основным видам моделей.

 

Для изучения различных экономических явлений экономисты используют их упрощенные формальные описания, называемые экономическими моделями. При построении экономических моделей выявляются существенные факторы и отбрасываются детали несущественные для решения поставленной задачи.

К экономическим моделям могут относится модели:

        экономического роста

        потребительского выбора

        равновесия на финансовом и товарном рынке и многие другие.

Модель — это логическое или математическое описание компонентов и функций, отражающих существенные свойства моделируемого объекта или процесса.

Модель используется как условный образ, сконструированный для упрощения исследования объекта или процесса.

Природа моделей может быть различна. Модели подразделяются на: вещественные, знаковые, словесное и табличное описание и др.

Экономико-математическая модель

В управлении хозяйственными процессами наибольшее значение имеют прежде всего экономико-математические модели, часто объединяемые в системы моделей.

Экономико-математическая модель (ЭММ) — это математическое описание экономического объекта или процесса с целью их исследования и управления ими. Это математическая запись решаемой экономической задачи.

Основные типы моделей

        Экстраполяционные модели

        Факторные эконометрические модели

        Оптимизационные модели

        Балансовые модели, модель МежОтраслевогоБаланса (МОБ)

        Экспертные оценки

        Теория игр

        Сетевые модели

        Модели систем массового обслуживания

В основу классификации математических моделей можно положить различные принципы. Можно классифицировать модели по отраслям наук (математические модели в физике, биологии, социологии и т.д.). Можно классифицировать по применяемому математическому аппарату (модели, основанные на применении обыкновенных дифференциальных уравнений, дифференциальных уравнений в частных производных, стохастических методов, дискретных алгебраических преобразований и т.д.). Наконец, если исходить из общих задач моделирования в разных науках безотносительно к математическому аппарату, наиболее естественна такая классификация:

        дескриптивные  (описательные)  модели;

        оптимизационные модели;

        многокритериальные модели;

        игровые модели.

Поясним это на примерах.

Дескриптивные (описательные) модели. Например, моделирование движения кометы, вторгшейся в Солнечную систему, производится с целью предсказания траектории ее полета, расстояния, на котором она пройдет от Земли, и т.д. В этом случае цели моделирования носят описательный характер, поскольку нет никаких возможностей повлиять на движение кометы, что-то в нем изменить.

Оптимизационные модели используются для описания процессов, на которые можно воздействовать, пытаясь добиться достижения заданной цели. В этом случае в модель входит один или несколько параметров, доступных влиянию. Например, меняя тепловой режим в зернохранилище, можно задаться целью подобрать такой режим, чтобы достичь максимальной сохранности зерна, т.е. оптимизировать процесс хранения.

Многокритериальные модели. Нередко приходится оптимизировать процесс по нескольким параметрам одновременно, причем цели могут быть весьма противоречивыми. Например, зная цены на продукты и потребность человека в пище, нужно организовать питание больших групп людей (в армии, детском летнем лагере и др.) физиологически правильно и, одновременно с этим, как можно дешевле. Ясно, что эти цели совсем не совпадают, т.е. при моделировании будет использоваться несколько критериев, между которыми нужно искать баланс.

Игровые модели могут иметь отношение не только к компьютерным играм, но и к весьма серьезным вещам. Например, полководец перед сражением при наличии неполной информации о противостоящей армии должен разработать план: в каком порядке вводить в бой те или иные части и т.д., учитывая и возможную реакцию противника. Есть специальный раздел современной математики — теория игр, — изучающий методы принятия решений в условиях неполной информации.

Методические рекомендации

В школьном курсе информатики начальное представление о компьютерном математическом моделировании ученики получают в рамках базового курса. В старших классах математическое моделирование может глубоко изучаться в общеобразовательном курсе для классов физико-математического профиля, а также в рамках специализированного элективного курса.

Основными формами обучения компьютерному математическому моделированию в старших классах являются лекционные, лабораторные и зачетные занятия. Обычно работа по созданию и подготовке к изучению каждой новой модели занимает 3—4 урока. В ходе изложения материала ставятся задачи, которые в дальнейшем должны быть решены учащимися самостоятельно, в общих чертах намечаются пути их решения. Формулируются вопросы, ответы на которые должны быть получены при выполнении заданий. Указывается дополнительная литература, позволяющая получить вспомогательные сведения для более успешного выполнения заданий.

Формой организации занятий при изучении нового материала обычно служит лекция. После завершения обсуждения очередной модели учащиеся имеют в своем распоряжении необходимые теоретические сведения и набор заданий для дальнейшей работы. В ходе подготовки к выполнению задания учащиеся выбирают подходящий метод решения, с помощью какого-либо известного частного решения тестируют разработанную программу. В случае вполне возможных затруднений при выполнении заданий дается консультация, делается предложение более детально проработать указанные разделы в литературных источниках.

Наиболее соответствующим практической части обучения компьютерному моделированию является метод проектов. Задание формулируется для ученика в виде учебного проекта и выполняется в течение нескольких уроков, причем основной организационной формой при этом являются компьютерные лабораторные работы. Обучение моделированию с помощью метода учебных проектов может быть реализовано на разных уровнях. Первый — проблемное изложение процесса выполнения проекта, которое ведет учитель. Второй — выполнение проекта учащимися под руководством учителя. Третий — самостоятельное выполнение учащимися учебного исследовательского проекта.

Результаты работы должны быть представлены в численном виде, в виде графиков, диаграмм. Если имеется возможность, процесс представляется на экране ЭВМ в динамике. По окончанию расчетов и получению результатов проводится их анализ, сравнение с известными фактами из теории, подтверждается достоверность и проводится содержательная интерпретация, что в дальнейшем отражается в письменном отчете.

Если результаты удовлетворяют ученика и учителя, то работа считается завершенной, и ее конечным этапом является составление отчета. Отчет включает в себя краткие теоретические сведения по изучаемой теме, математическую постановку задачи, алгоритм решения и его обоснование, программу для ЭВМ, результаты работы программы, анализ результатов и выводы, список использованной литературы.

Когда все отчеты составлены, на зачетном занятии учащиеся выступают с краткими сообщениями о проделанной работе, защищают свой проект. Это является эффективной формой отчета группы, выполняющей проект, перед классом, включая постановку задачи, построение формальной модели, выбор методов работы с моделью, реализацию модели на компьютере, работу с готовой моделью, интерпретацию полученных результатов, прогнозирование. В итоге учащиеся могут получить две оценки: первую — за проработанность проекта и успешность его защиты, вторую — за программу, оптимальность ее алгоритма, интерфейс и т.д. Учащиеся получают отметки и в ходе опросов по теории.

Существенный вопрос — каким инструментарием пользоваться в школьном курсе информатики для математического моделирования? Компьютерная реализация моделей может быть осуществлена:

        с помощью табличного процессора (как правило, MS Excel);

        путем создания программ на традиционных языках программирования  (Паскаль, Бейсик и др.), а также на их современных версиях  (Delphi, Visual
Basic for Application и т.п.);

        с помощью специальных пакетов прикладных программ  для  решения  математических  задач (MathCAD и т.п.).

На уровне основной школы первое средство представляется более предпочтительным. Однако в старшей школе, когда программирование является, наряду с моделированием, ключевой темой информатики, желательно привлекать его в качестве инструмента моделирования. В процессе программирования учащимся становятся доступными детали математических процедур; более того, они просто вынуждены их осваивать, а это способствует и математическому образованию. Что же касается использования специальных пакетов программ, то это уместно в профильном курсе информатики в качестве дополнения к другим инструментам.

 

18. Какие этапы включает реализация сетевой модели?

 

29. Каков алгоритм решения задач при постановке многоканальной системы массового обслуживания с потерями?

Теория массового обслуживания опирается на теорию вероятностей и математическую статистику.

На первичное развитие теории массового обслуживания оказали особое влияние работы датского ученого А.К. Эрланга (1878-1929).

Теория массового обслуживания – область прикладной математики, занимающаяся анализом процессов в системах производства, обслуживания, управления, в которых однородные события повторяются многократно, например, на предприятиях бытового обслуживания; в системах приема, переработки и передачи информации; автоматических линиях производства и др.

Предметом теории массового обслуживания является установление зависимостей между характером потока заявок, числом каналов обслуживан6ия, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами.

Задача теории массового обслуживания – установить зависимость результирующих показателей работы системы массового обслуживания (вероятности того, что заявка будет обслужена; математического ожидания числа обслуженных заявок и т.д.) от входных показателей (количества каналов в системе, параметров входящего потока заявок и т.д.). Результирующими показателями или интересующими нас характеристиками СМО являются – показатели эффективности СМО, которые описывают способна ли данная система справляться с потоком заявок.

Задачи теории массового обслуживания носят оптимизационный характер и в конечном итоге включают экономический аспект по определению такого варианта системы, при котором будет обеспечен минимум суммарных затрат от ожидания обслуживания, потерь времени и ресурсов на обслуживание и простоев каналов обслуживания.

1.2. Система массового обслуживания.

Система обслуживания считается заданной, если известны:

1) поток требований, его характер;

2) множество обслуживающих приборов;

3) дисциплина обслуживания (совокупность правил, задающих процесс обслуживания).

Каждая СМО состоит из какого-то числа обслуживающих единиц, которые называются каналами обслуживания. В качестве каналов могут фигурировать: линии связи, различные приборы, лица, выполняющие те или иные операции и т.п

Всякая СМО предназначена для обслуживания какого-то потока заявок, поступающих в какие-то случайные моменты времени. Обслуживание заявок продолжается какое-то случайное время, после чего канал освобождается и готов к приему следующей заявки. Случайный характер потока заявок и времен обслуживания приводит к тому, что в какие-то периоды времени на входе СМО скапливается излишне большое число заявок (они либо становятся в очередь, либо покидают СМО не обслуженными); в другие же периоды СМО будет работать с недогрузкой или вообще простаивать.

Процесс работы СМО представляет собой случайный процесс с дискретными состояниями и непрерывным временем; состояние СМО меняется скачком в моменты появления каких-то событий ( или прихода новой заявки, или окончания обслуживания, или момента, когда заявка, которой надоело ждать, покидает очередь ).

Многоканальная модель (с отказами) с пуассоновским входным потоком и экспоненциальным распределением длительности обслуживания

Пусть СМО с отказами имеет n каналов обслуживания, функционирующих независимо друг от друга. Входной поток заявок и поток обслуживания заявок являются пуассоновскими. Интенсивность поступления заявок равна  ,интенсивность обслуживания  . Обозначим состояния СМО так:

- все каналы свободны;

- занят один канал, остальные свободны;

............................................

- заняты ровно k каналов, остальные свободны;

............................................

- все n каналов заняты, поступившая в СМО заявка получает отказ в обслуживании. Уравнения Колмогорова для вероятностей состояний системы , ,..., будут иметь следующий вид:

,

...................................

, 1<=k<=n-1,

..................................

Начальные условия решения СМО таковы: , ,..., .

Стационарное решение СМО имеет вид (формулы Эрланга):

, k=1, 2,..., n,

,

где .

Вероятностные характеристики многоканальной СМО с отказами в стационарном режиме таковы:
1) вероятность отказа

  ;

2) вероятность того, что заявка будет принята к обслуживанию (относительная пропускная способность) 

;

3) абсолютная пропускная способность

;

4) среднее число каналов, занятых обслуживанием

 

49. Назовите известных ученых, работавших и применивших на практике экономико-математические методы и модели.

 

40.Каковы особенности подготовки исходной информации  и составления экономико-математической задачи при прогнозировании развития сельскохозяйственной организации?

Подготовка исходной информации. Моделирование предъяв-

ляет жесткие требования к системе информации. В то же время

реальные возможности получения информации ограничивают выбор

моделей, предназначаемых для практического использования. При

этом принимается во внимание не только принципиальная возмож-

ность подготовки информации (за определенные сроки), но и зат-

раты на подготовку соответствующих информационных массивов.

Эти затраты не должны превышать эффект от использования допол-

нительной информации.

В процессе подготовки информации широко используются ме-

тоды теории вероятностей, теоретической и математической ста-

тистики. При системном экономико-математическом моделировании

Информация о работе Контрольная работа по "Эконометрии"