Автор работы: Пользователь скрыл имя, 05 Мая 2014 в 09:45, доклад
Суть экономико-математического моделирования заключается в описании социально-экономических систем и процессов в виде экономико-математических моделей.
Под моделью будем понимать образ реального объекта в материальной или идеальной форме, отражающий существенные свойства моделируемого объекта и замещающий его в ходе исследования и управления. Объектом является социально-экономическая система.
МИНОБРНАУКИ РОССИИ
Волжский политехнический институт (филиал)
федерального государственного бюджетного образовательного учреждения
высшего профессионального образования
«Волгоградский государственный технический университет»
Факультет Инженерно-экономический
Кафедра «Экономика и менеджмент»
Доклад
по дисциплине «Экономическое обоснование научных решений»
на тему:
«Экономико-математическое моделирование при принятии решений»
Выполнил:
студент гр. ВТО-6
Александров А.А.
Проверил:
к.э.н., доцент
Гончарова Е. В.
Волжский 2014
Сущность экономико-математического моделирования, как метода принятия решений. Экономико-математическое моделирование
Суть экономико-математического моделирования заключается в описании социально-экономических систем и процессов в виде экономико-математических моделей.
Под моделью будем понимать образ реального объекта в материальной или идеальной форме, отражающий существенные свойства моделируемого объекта и замещающий его в ходе исследования и управления. Объектом является социально-экономическая система.
Практическими задачами экономико-математического моделирования являются:
- анализ экономических объектов и процессов;
- экономическое прогнозирование, предвидение развития экономических процессов;
- выработка управленческих решений на всех уровнях
Экономико-математическое моделирование является лишь одним из компонентов в человеко-машинных системах планирования и управления экономическими системами. Принятие управленческих решений остается за человеком.
Процесс моделирования, в том числе и экономико-математического, включает в себя три структурных элемента:
объект исследования;
субъект (исследователь);
модель, опосредующую отношения между познающим субъектом и познаваемым объектом.
Важнейшим понятием при экономико-математическом моделировании, как и при всяком моделировании, является понятие адекватности модели, т.е. соответствия модели моделируемому объекту или процессу. Имеется в виду соответствие по тем свойствам, которые считаются существенными для исследования. Проверка адекватности экономико-математических моделей является весьма серьезной проблемой, ее осложняет трудность измерения экономических величин. Однако без такой проверки применение результатов моделирования в управленческих решениях может не только оказаться мало полезным, но и принести существенный вред.
Этапы экономико-математического моделирования
1 этап - постановка экономической проблемы, ее качественный анализ. На первом этапе формулируется сущность проблемы, принимаемые предпосылки и допущения. Выделяются важнейшие черты и свойства моделируемого объекта, изучается его структура.
2 этап - построение математической модели.
Сначала определяется тип экономико-математической модели, изучаются возможности ее применения в данной задаче, уточняются конкретный перечень переменных и параметров и форма связей.
Для некоторых сложных объектов целесообразно строить несколько разноаспектных моделей; при этом каждая модель выделяет лишь некоторые стороны объекта, а другие стороны учитываются приближенно. Оправдано стремление построить модель, относящуюся к хорошо изученному классу математических задач, что может потребовать некоторого упрощения исходных предпосылок модели, не искажающего основных черт моделируемого объекта. Однако возможна и такая ситуация, когда формализация проблемы приводит к неизвестной ранее математической структуре.
3 этап - математический анализ модели.
На третьем этапе чисто математическими приемами исследования выявляются общие свойства модели и ее решений. В частности, важным моментом является доказательство существования решения сформулированной задачи. При аналитическом исследовании выясняется, единственно ли решение, какие переменные могут входить в решение, в каких пределах они изменяются, каковы тенденции их изменения и т.д. Однако модели сложных экономических объектов с большим трудом поддаются аналитическому исследованию; в таких случаях переходят к численным методам исследования.
4 этап - подготовка исходной информации.
В экономических задачах это, как правило, наиболее трудоемкий этап моделирования, так как дело не сводится к пассивному сбору данных. Математическое моделирование предъявляет жесткие требования к системе информации; при этом надо принимать во внимание не только принципиальную возможность подготовки информации требуемого качества, но и затраты на подготовку информационных массивов. В процессе подготовки информации используются методы теории вероятностей, теоретической и математической статистики для организации выборочных обследований, оценки достоверности данных и т.д. При системном экономико-математическом моделировании результаты функционирования одних моделей служат исходной информацией для других.
5 этап - численное решение.
Включает разработку алгоритмов численного решения задачи, подготовку программ на ЭВМ и непосредственное проведение расчетов; при этом значительные трудности вызываются большой размерностью экономических задач. Обычно расчеты на основе экономико-математической модели носят многовариантный характер. Многочисленные модельные эксперименты, изучение поведения модели при различных условиях, возможно, проводить благодаря высокому быстродействию современных ЭВМ. Численное решение существенно дополняет результаты аналитического исследования, а для многих моделей является единственно возможным.
6-й этап - анализ численных результатов и их применение.
Решается важнейший вопрос о правильности и полноте результатов моделирования и применимости их как в практической деятельности, так и в целях усовершенствования модели. Поэтому в первую очередь должна быть проведена проверка адекватности модели по тем свойствам, которые выбраны в качестве существенных.
Перечисленные этапы взаимосвязаны, но иногда приходится переходить к предыдущим этапам и корректировать данные. Наиболее часто такая необходимость возникает на этапе подготовки исходной информации. Например, необходимая информация отсутствует или затраты на ее подготовку слишком велики. Тогда нужно приспособиться к доступной исследователю информации, а затем возвращаться к этапам постановки задачи и ее формализации.
Классификация экономико-математических методов и моделей
Таблица 1 - Формальная классификация моделей.
Признак классификации |
Методы |
1. Целевое назначение |
Прикладные, теоретико-аналитические |
2. По типу связей |
Детерминированные, стохастические |
3. По фактору времени |
Статические, динамические |
4. По форме показателей |
Линейные, нелинейные |
5. По соотн. экзог. и эндогенных переменных |
Открытые, закрытые |
6. По типу переменных |
Дискретные, непрерывные, смешанные |
7. По степени детализации |
Агрегированные (макромодели), детализированные (микромодели) |
8. По количеству связей |
Одноэтапные, многоэтапные |
9. По форме представления информации |
Матричные, сетевые |
10. По форме процесса |
Аналитические, графические, логические |
11. По типу математического аппарата |
Балансовые, статистические, оптимизац., имитационные, смешанные |
Рассмотрим вопросы классификации экономико-математических методов. Эти методы представляют собой комплекс экономико-математических дисциплин, являющихся сплавом экономики, математики и кибернетики. Поэтому классификация экономико-математических методов сводится к классификации научных дисциплин, входящих в их состав. Хотя общепринятая классификация этих дисциплин пока не выработана, с известной степенью приближения в составе экономико-математических методов можно выделить следующие разделы:
- экономическая кибернетика:
системный анализ экономики, теория
экономической информации и
- математическая статистика:
экономические приложения
- математическая экономия
и изучающая те же вопросы
с количественной стороны эконо
- методы принятия оптимальных решений, в том числе исследование операций в экономике. Это наиболее объемный раздел, включающий в себя следующие дисциплины и методы: оптимальное (математическое) программирование, в том числе методы ветвей и границ, сетевые методы планирования и управления, программно-целевые методы планирования и управления, теорию и методы управления запасами, теорию массового обслуживания, теорию игр, теорию и методы принятия решений, теорию расписаний. В оптимальное (математическое) программирование входят в свою очередь линейное программирование, нелинейное программирование, динамическое программирование, дискретное (целочисленное) программирование, дробно-линейное программирование, параметрическое программирование, сепарабельное программирование, стохастическое программирование, геометрическое программирование;
- методы и дисциплины,
специфичные отдельно как для
централизованно планируемой
- методы экспериментального изучения экономических явлений. К ним относят, как правило, математические методы анализа и планирования экономических экспериментов, методы машинной имитации (имитационное моделирование), деловые игры. Сюда можно отвести также и методы экспертных оценок, разработанные для оценки явлений, не поддающихся непосредственному измерению. Перейдем теперь к вопросам классификации экономико-математических моделей, другими словами, математических моделей социально-экономических систем и процессов. Единой системы классификации таких моделей в настоящее время также не существует, однако обычно выделяют более десяти основных признаков их классификации, или классификационных рубрик. Рассмотрим некоторые из этих рубрик.
По общему целевому назначению экономико-математические модели делятся на теоретико-аналитические, используемые при изучении общих свойств и закономерностей экономических процессов, и прикладные, применяемые в решении конкретных экономических задач анализа, прогнозирования и управления.
По степени агрегирования объектов моделирования модели разделяются на макроэкономические и микроэкономические. Хотя между ними и нет четкого разграничения, к первым из них относят модели, отражающие функционирование экономики как единого целого, в то время как микроэкономические модели связаны, как правило, с такими звеньями экономики, как предприятия и фирмы.
Экономико-математические модели могут классифицироваться также по характеристике математических объектов, включенных в модель, другими словами, по типу математического аппарата, используемого в модели. По этому признаку могут быть выделены матричные модели, модели линейного и нелинейного программирования, корреляционно-регрессионные модели, модели теории массового обслуживания, модели сетевого планирования и управления, модели теории игр и т.д.
Список литературы
1. Реферат "Экономико-математические
методы при подготовке и реализации управленческих
решений". Режим доступа – [http://otherreferats.allbest.
Информация о работе Экономико-математическое моделирование при принятии решений