Первый радиоприёмник Попова

Автор работы: Пользователь скрыл имя, 23 Апреля 2014 в 13:25, курсовая работа

Краткое описание

После того, как было открыто электричество, по проводам научились передавать электрические сигналы, переносившие телеграммы и живую речь. Но ведь телефонные и телеграфные провода не протянешь за судном или самолётом, за поездом или автомобилем.
И тут людям помогло радио (в переводе с латинского radio означает "излучать", оно имеет общий корень и с другими латинскими словами radius – "луч"). Для передачи сообщения без проводов нужны лишь радиопередатчик и радиоприёмник, которые связаны между собой электромагнитными волнами – радиоволнами, излучаемыми передатчиком и принимаемые приёмником.

Содержание

1. Первый радиоприёмник Попова.
2. Совершенствование радио Поповым.
3. Современные радиоприёмники.

Вложенные файлы: 1 файл

Документ Word 2007.docx

— 259.01 Кб (Скачать файл)

Телевизор - это вообще - отвратительная штука. Чем просиживать часами перед "голубым экраном", куда полезнее вести здоровый образ жизни: не спеша, с чашкой кофэ - за компьютером…

Тем не менее, вещи, которые я буду рассказывать в этом цикле статей, могут вполне пригодиться в нашей с вами практической деятельности.

Итак, сейчас мы разберемся, как же происходит передача видеосигнала. Рассматривать мы будем родную до боли систему SECAM, потому что в нашей стране ( а именно - Российской Федерации) официально принята именно эта система телевидения. Впрочем - обо всем по порядку.

Как работает телевизор?

Телевизор работает по 24 часа в сутки 7 дней в неделю. Это понятно. 
У него есть экран - 1шт и динамик - от 1 до бесконечности, в зависимости от "навороченности" агрегата. Еще у него есть антенна и пульт управления. Но нас сейчас интересует только экран. А переводя с языка домохозяек на язык мудрых котов - кинескоп (электронно-лучевая трубка - ЭЛТ).

Я прекрасно понимаю, что в наш век плазмы и жидкого кристалла, электронно-лучевой кинескоп кажется кому-то пережитком старины. Однако, понять принцип работы телевизора, проще всего именно разбираясь с ЭЛТ.

Электронно-лучевая трубка

Шо це таке. Причем здесь электроны? Причем здесь лучи?

Дело в том, что картинка на экране рисуется при помощи электронного луча. Электронный луч очень похож на световой. Но световой луч состоит из фотонов, а электронный - из электронов, и мы его увидеть не можем. Куча электронов несется с бешеной скоростью по прямой от пункта А - к пункту Б. Так образуется "луч".

Пункт Б - это анод. Он находится прямо на обратной стороне экрана. Также, экран (с обратной стороны) вымазан специальным веществом - люминофором. При столкновении электрона на бешеной скорости с люминофором, последний испускает видимый свет. Чем быстрее летел электрон до столкновения - тем свет будет ярче. То есть, люминофор - это преобразователь "света" электронного луча в свет, видимый для человеческого глаза.

С пунктом Б разобрались. А что же такое пункт "А"? А - это "электронная пушка". Название страшное. Но страшного в ней ничего нет. Она не предназначена для того, чтобы жестоко расстреливать пришельцев с Марса. Но "стрелять" она все же умеет - электронным лучем в экран.

Как это все устроено?

Вообще, ЭЛТ - это такая большая электронная лампа. Как? Вы не знаете что такое лампа? Ну ладно…

Электронные лампы - это такие же усилительные элементы как и любимые всеми нами транзисторы. Но лампы появились намного раньше их кремниевых "коллег", еще в первой половине прошлого века.

Лампа - это такой стеклянный баллон, из которого откачан воздух. 
В самой простой лампе - 4 вывода: катод, анод и два вывода нити накала. Нить накала нужна для того, чтобы разогреть катод. А разогреть катод нужно для того, чтобы с него полетели электроны. А электроны должны полететь затем, чтоб возник электрический ток через лампу. Для этого обычно на нить накала подается напряжение - 6,3 или 12,6 В (в зависимости от типа лампы)

Кроме того, чтобы полетели электроны - нужно высокое напряжение между катодом и анодом. Оно зависит от расстояния между электродами и от мощности лампы. В обычных радиолампах это напряжение составляет несколько сотен вольт, расстояния от катода до анода в таких лампах не превышают нескольких миллиметров. 
В кинескопе расстояние от катода, находящегося в электронной пушке до экрана может превышать несколько десятков сантиметров. Соответственно, и напряжение там нужно намного большее - 15…30 кВ.

Такие зверские напряжения создает специальный повышающий трансформатор. Его еще называют строчный трансформатор, поскольку он работает на строчной частоте. Но, об этом - чуть позже.

При ударении электрона об экран, кроме видимого света, "вышибаются" также и другие излучения. В частности - радиоактивное. Вот почему не рекомендуется смотреть телек ближе 1…2 метров от экрана.

Итак, луч получили. И он так красивенько светит аккурат в центр экрана. Но нам-то надо, чтоб он "чертил" по экрану линии. То есть, нужно заставить его отклоняться от центра. И в этом вам помогут… электромагниты. Дело в том, что электронный луч, в отличие от светового, очень чувствителен к магнитному полю. Поэтому то он и используется в ЭЛТ.

Нужно поставить две пары отклоняющих катушек. Одна пара будет отклонять по горизонтали, другая - по вертикали. Умело управляя ими, можно гонять луч по экрану куда угодно.

А куда угодно? 

 

Вот отсюда мы и начинаем нашу повесть о строчках точках и крючочках…

Повесть о Строчках, Точках и Крючочках

Картинка на экране телевизора образуется в результате того, что луч с бешенной скоростью чертит слева-направо сверху-вниз по экрану. Такой метод последовательной прорисовки изображения называется "развертка".

Поскольку развертка происходит очень быстро - для глаза все точки сливаются в строчки а строчки - в единый кадр. 

 

В системах PAL и SECAM за одну секунду луч успевает пробежать весь экран 50 раз. 
В американской системе NTSC - еще больше - аж 60 раз! Вообще говоря, системы PAL и SECAM отличаются лишь в передаче цвета. Все остальное у них - одинаково.

Картинка образуется за счет того, что во время "бега", луч изменяет свою яркость в соответствии с принимаемым видеосигналом. Как происходит управление яркостью?

А очень просто! Дело в том, что кроме рассмотренных электродов - анода и катода, в лампах бывает еще третий электрод - сетка. Сетка - это управляющий электрод. подавая на сетку сравнительно низкое напряжение, можно управлять током, протекающим через лампу. Иными словами, можно управлять интенсивностью потока электронов, "летящих" от катода к аноду.

В ЭЛТ сетка используется для изменения яркости луча.

Подавая на сетку отрицательное напряжение (относительно катода), можно ослабить интенсивность потока электронов в луче, или вообще закрыть "дорогу" для электронов. Это бывает нужно, например, при перемещении луча от конца одной строки к началу другой.

Теперь поговорим поподробнее именно про принципы развертки. 
Для начала, стоит запомнить несколько несложных чисел и терминов:

Растр - это одна "строчка", которую рисует луч на экране. 
Поле - это все строчки, которые нарисовал луч за один вертикальный проход. 
Кадр - это элементарная единица видеоряда. Каждый кадр состоит из двух полей - четного и нечетного.

Это стоит пояснить: изображение на экране телевизора разворачивается с частотой 50 полей в секунду. Однако, телевизионный стандарт равен 25 кадрам в секунду. Поэтому один кадр при передаче разбивается на два поля - четное и нечетное. В четном поле содержатся только четные строчки кадра (2,4,6,8…), в нечетном - только нечетные. Изображение на экране также "рисуется" через строку. Такая развертка называется "чересстрочная развертка".

Бывает еще "прогрессивная развертка" - когда весь кадр развертывается за один вертикальный ход луча. Она используется в компьютерных мониторах.

Итак, теперь сухие числа. Все приведенные числа справедливы для систем PAL и SECAM.

Кол-во полей в секунде - 50 
Кол-во строк в кадре - 625 
Количество эффективных строк в кадре - 576 
Количество эффективных точек в строке - 720

А эти числа выводятся из вышеприведенных:

Кол-во строк в поле - 312,5 
Строчная частота - 15625 Гц 
Длительность одной строки - 64 мкС (вместе с обратным ходом луча)

Далее мы поговорим о параметрах видеосигнала и составим схему, синтезирующую импульсы синхронизации.

 

 

 

 

 

Принцип работы жидкокристаллических и плазменных телевизоров

Немного расскажем о технологиях, используемых для производства плазменных и жидкокристаллических телевизоров, т.к. именно они определяют технические возможности этих устройств.

PDP (англ. Plasma Display Panel — плазменная панель) 
PDP-дисплеи представляет собой матрицу газонаполненных ячеек, заключенных между двумя параллельными стеклянными поверхностями. Принцип их работы основан на свечении инертного газа в ячейках-пикселях под действием тока. Поэтому плазменные панели — светоизлучающие приборы, в отличие от LCD.

 

LCD (англ. Liquid Crystal Display — жидкокристаллический дисплей) 
LCD-дисплеи имеют многослойную структуру, состоящую из слоя жидкокристаллического материала, активизирующего его мультиплексора, цветового фильтра и подсветки. Свет, излучаемый подсветкой, проходит через жидкий кристалл и цветовой фильтр. Основное различие между технологиями «плазмы» и ЖК состоит в том, что пиксели LCD, сами по себе, свет не излучают — жидкие кристаллы лишь регулируют его интенсивность.

 

стройство и принцип работы панели плазменного телевизора 
 
В течение последних 75 лет двадцатого столетия, подавляющее большинство телевизоров были построены по одной и той же технологии: на электронно-лучевых трубках (ЭЛТ). 
Отличной альтернативой стали плазменные панели и телевизоры. Телевизор отличается от панели наличием встроенного телевизионного тюнера и динамиков, у панелей все это внешнее. Толщина современных панелей 15 см  и менее. В самом начале производства панели шли с защитным передним стеклом, что увеличивало вес конструкции и требовалась чистка (раз в 2-3 года) пыли которая скапливалась между стеклом и панелью. 
Современные плазменные телевизоры выпускаются без защитного стекла.  
 
Так как же это работает? Читаем дальше. 
 
Смесь газов – ксенона и неона содержится в сотнях тысяч крошечных ячейках, расположенных между двумя стеклянными пластинами. Прозрачные дисплейные электроды зажаты между пластинами, изготовленными из изоляционных материалов с защитным слоем из окиси магния. Дисплейные электроды расположены выше ячейки и проходят вдоль внутренней стороны стеклянной пластины. Адресные электроды расположены ниже ячейки и проходят вдоль задней стеклянной пластины, то есть расположены крест на крест.

Плазменная панель в разрезе.

 

 

 

 

 

 Оба комплекта электродов проходят через всю панель. Дисплейные электроды размещены в горизонтальных колонках вдоль экрана, а адресные электроды размещены в вертикальных колоннах. Из диаграммы ниже видно, как вертикальные и горизонтальные электроды формируют основную сетку.

 

 

 

 

 

 

 

 

Чтобы ионизировать газ в конкретной ячейке, блок управления заряжает электроды, которые пересекаются на этой ячейке через модули Х и Y. Блок делает это тысячи раз в небольшие доли секунды, заряжая каждую ячейку в отдельности.Когда электроды заряжены (с разницей напряжения между ними), электрический ток течет через газ в ячейке. На последнем рисунке видно как ток создает быстрый поток заряженных частиц, которые стимулируют газовые атомы выпускать ультрафиолетовые фотоны. Выпущенные ультрафиолетовые фотоны взаимодействуют с фосфором, которым покрыта внутренняя стенка ячейки. Фосфор – это материал, который выделяет свет при воздействии на него другого источника энергии. Когда ультрафиолетовый фотон попадает в атом фосфора, один из электронов фосфора переходит на более высокий уровень энергии и нагревается. Когда уровень энергии электрона начинает падать до нормального уровня, он выпускает энергию в форме видимого светлого фотона.

 

 

 

 

Каждый пиксель состоит из трех отдельных субпикселей (ячеек). Каждый субпиксель покрыт фосфором своего цвета. Один субпиксель имеет красный светлый фосфор, один субпиксель имеет зеленый светлый фосфор и один субпиксель имеет синий светлый фосфор. Эти цвета при работе смешиваются вместе, чтобы создавать общий цвет пикселя.Изменяя импульсы, проходящие через каждую ячейку, система управления может увеличивать или уменьшать интенсивность излучения каждого субпикселя (ячейки), что бы создать сотни комбинаций красного, зеленого и синего. Таким образом система может воспроизводить цвет практически по всему видимому спектру. 
Основное преимущество плазменной технологии - то, что можно сделать широкий экран, используя сверхтонкие материалы. И поскольку каждый пиксель зажигается индивидуально, то образ получается очень ярким и хорошо виден с разных углов обзора. 
Наибольшим недостатком этой технологии является цена.Вместе с тем, цены на плазменные телевизоры и панели падают с каждым годом и вскоре совсем вытеснят кинескопные телевизоры (ЭЛТ).

 

 

 

 

 

 


Информация о работе Первый радиоприёмник Попова