Шпаргалка по "Анатомии"

Автор работы: Пользователь скрыл имя, 19 Февраля 2013 в 16:11, шпаргалка

Краткое описание

1. Основные периоды постнатального возраста
2. Понятие гомеостаза, саморегуляция организма
3. Физическое развитие ребенка, изменения пропорция тела
4. Рефлекторная деятельность ЦНС
....
64. Обонятельный анализатор

Вложенные файлы: 1 файл

Bilety_po_anatomii.doc

— 359.00 Кб (Скачать файл)

Билет 55 
Гипоталамус или подбугорье — отдел промежуточного мозга, расположенный ниже таламуса, или «зрительных бугров», за что и получил своё название. 
Гипоталамус располагается спереди от ножек мозга и включает в себя ряд структур: расположенную спереди зрительную и обонятельную части. К последней относится собственно подбугорье, или гипоталамус, в котором расположены центры вегетативной части нервной системы. В гипоталамусе имеются нейроны обычного типа и нейросекреторные клетки. И те и другие вырабатывают белковые секреты и медиаторы, однако в нейросекреторных клетках преобладает белковый синтез, а нейросекрет выделяется в лимфу и кровь. Эти клетки трансформируют нервный импульс в нейрогормональный. 
Гипоталамус контролирует деятельности эндокринной системы человека благодаря тому, что его нейроны способны выделять нейроэндокринные трансмиттеры (либерины и статины), стимулирующие или угнетающие выработку гормонов гипофизом. Иными словами, гипоталамус, масса которого не превышает 5% мозга, является центром регуляции эндокринных функций, он объединяет нервные и эндокринные регуляторные механизмы в общую нейроэндокринную систему. Гипоталамус образует с гипофизом единый функциональный комплекс, в котором первый играет регулирующую, второй — эффекторную роль. 
В гипоталамусе залегают также нейроны, которые воспринимают все изменения, происходящие в крови и спинномозговой жидкости (температуру, состав, содержание гормонов и т.д.). Гипоталамус связан с корой большого мозга и лимбической системой. В гипоталамус поступает информация из центров, регулирующих деятельность дыхательной и сердечно-сосудистой систем. В гипоталамусе расположены центры жажды, голода, центры, регулирующие эмоции и поведение человека, сон и бодрствование, температуру тела и т.д. Центры коры большого мозга корректируют реакции гипоталамуса, которые возникают в ответ на изменение внутренней среды организма. В последние годы из гипоталамуса выделены обладающие морфиноподобным действием энкефалины и эндорфины. Считают, что они влияют на поведение (оборонительные, пищевые, половые реакции) и вегетативные процессы, обеспечивающие выживание человека. Таким образом, гипоталамус регулирует все функции организма, кроме ритма сердца, кровяного давления и спонтанных дыхательных движений.

Билет 56 
Лимбическая система — совокупность ряда структур головного мозга. Участвует в регуляции функций внутренних органов, обоняния, инстинктивного поведения, эмоций, памяти, сна, бодрствования и др. Термин лимбическая система впервые введён в научный оборот в 1952 году американским исследователем Паулем Мак-Лином. 
Включает в себя: 
обонятельную луковицу 
обонятельный тракт  
обонятельный треугольник 
переднее продырявленное вещество  
поясная извилина ): автономные функции регуляции частоты сердцебиений и кровяного давления; 
парагиппокампальная извилина  
зубчатая извилина  
гиппокамп : требуемый для формирования долговременной памяти 
миндалевидное тело :агрессия и осторожность, страх 
гипоталамус ): регулирует автономную нервную систему через гормоны, регулирует кровяное давление и сердцебиение, голод, жажду, половое влечение, цикл сна и пробуждения 
сосцевидное тело: важен для формирования памяти 
ретикулярную формацию среднего мозга 
Функции лимбической системы 
Получая информацию о внешней и внутренней средах организма, лимбическая система запускает вегетативные и соматические реакции, обеспечивающие адекватное приспособление организма к внешней среде и сохранение гомеостаза.  
Частные функции лимбической системы: 
регуляция функции внутренних органов (через гипоталамус); 
формирование мотиваций, эмоций, поведенческих реакций; 
играет важную роль в обучении; 
обонятельная функция.

Билет 57 
Конечный мозг (лат ) — самый передний отдел головного мозга. Состоит из двух полушарий большого мозга (покрытых корой), мозолистого тела, полосатого тела и обонятельного мозга.Является наиболее крупным отделом головного мозга. Это также самая развитая структура, покрывающая собой все отделы головного мозга. 
Большой мозг состоит из двух полушарий, каждое из которых представлено плащом, обонятельным мозгом и базальными ядрами. Полостью конечного мозга являются боковые желудочки, находящиеся в каждом из полушарий. Полушария большого мозга отделены друг от друга продольной щелью большого мозга и соединяются при помощи мозолистого тела, передней и задней спаек и спайки свода. 
Мозолистое тело состоит из поперечных волокон которые в латеральном направлении продолжаются в полушария, образуя лучистость мозолистого тела, соединяя друг с другом участки лобных и затылочных долей полушарий, дугообразно изгибаются и образуют передние — лобные и задние — затылочные щипцы. К задней и средней частям мозолистого тела снизу прилежит свод мозга, состоящий из двух дугообразно изогнутых тяжей, сращенных в средней своей части при помощи передней спайки мозга.

Билет 58 
Вегетативная (автономная) нервная система — регулирует деятельность внутренних органов, обеспечивает важнейшие функции питания, дыхания, выделения, размножения, циркуляции крови и лимфы. Ее реакции не подчинены напрямую нашему сознанию компоненты вегетативной нервной системы пронизывают практически все ткани организма, вместе с гормонами желез внутренней секреции (эндокринных желез) она координирует работу органов, подчиняя ее общей цели — созданию оптимальных условий существования организма в данной ситуации и в данный момент времени. 
Нервные клетки вегетативной нервной системы находятся не только в головном и спинном мозге, они широко рассеяны во многих органах, особенно в желудочно-кишечном тракте. Они в виде многочисленных узлов (ганглиев) располагаются между органами и мозгом. Вегетативные нейроны образуют друг с другом связи, позволяющие им работать автономно, образуется масса мелких нервных центров вне пределов центральной нервной системы, которые могут взять на себя некоторые относительно простые функции (например, организацию волнообразных сокращений кишечника). При этом центральная нервная система продолжает осуществлять общий контроль за ходом этих процессов и вмешиваться в них. 
В вегетативной нервной системе выделяют симпатическую и парасимпатическую части. При преобладающем влиянии одной из них орган снижает или, наоборот, усиливает свою работу. Обе они находятся под контролем высших отделов центральной нервной системы, чем достигается их согласованное действие. Вегетативные центры в головном и спинном мозге составляют центральный отдел вегетативной нервной системы, а ее периферический отдел представлен нервами, узлами, вегетативными нервными сплетениями. 
Симпатические центры расположены в боковых рогах серого вещества спинного мозга, в его грудных и поясничных сегментах. От их клеток отходят симпатические волокна, которые в составе передних корешков, спинномозговых нервов и их веточек направляются к узлам симпатического ствола. Правый и левый симпатические стволы расположены вдоль всего позвоночного столба. Они представляют собой цепочку утолщений (узлов), в которых находятся тела симпатических нервных клеток. К ним и подходят нервные волокна от центров спинного мозга. Отростки же клеток узлов идут к внутренним органам в составе вегетативных нервов и сплетений. 
Симпатические стволы имеют шейный, грудной, поясничный и тазовый отделы. Шейный отдел состоит из трех узлов, ветви которых образуют сплетения на сосудах головы, шеи, груди, около органов и в их стенках, в том числе, сердечные сплетения. Грудной отдел включает 10-12 узлов, их веточки образуют сплетения на аорте, бронхах, в пищеводе. Проходя через диафрагму, они входят в состав солнечного сплетения. Поясничный отдел симпатического ствола образуют 3-5 узлов. Их ветви через солнечное и другие вегетативные сплетения брюшной полости достигают желудка, печени, кишечника, почек, поджелудочной железы, половых желез. Тазовый отдел включает 4 узла, через которые и осуществляется симпатический контроль над органами малого таза (мочевым пузырем, прямой кишкой). 
Парасимпатические центры расположены в стволе головного мозга и в крестцовых сегментах спинного мозга. Отростки их нейронов идут, как правила, непосредственно до органов, а уже в их стенках находятся тела последних в этой цепочке нервных клеток с очень короткими отростками. Парасимпатические центры мозгового ствола через черепные нервы контролируют органы головы, шеи, а посредством блуждающего нерва — и органов грудной и брюшной полостей. Волокна от крестцовых центров идут по тазовым вегетативным сплетениям к органам таза и брюшной полости.

Билет 59 
Железы внутренней секреции 
К железам внутренней секреции относятся железы, не имеющие специализированных выводящих протоков и выделяющие свои секреты непосредственно в кровь. Секретом желез внутренней секреции являются физиологически активные вещества — гормоны. За счет гормонов осуществляется гуморальная регуляция физиологического состояния организма. Но среди эндокринных желез есть железы, которые выполняют двойную функцию — являются железами внутренней секреции и внешней секреции, так как имеют специализированные выводные протоки. К смешанным железам относятся поджелудочная железа (синтезирует пищевые ферменты, которые в составе панкреатического сока поступают в двенадцатиперстную кишку) и половые железы.

Билет 60 
Гипоталамо-гипофизарная система — объединение структур гипофиза и гипоталамуса, выполняющее функции как нервной системы, так и эндокринной. Этот нейроэндокринный комплекс является примером того, насколько тесно связаны в организме млекопитающих нервный и гуморальный способы регуляции. 
Гормоны гипоталамо-гипофизарной системы 
Под влиянием того или иного типа воздействия гипоталамуса, доли гипофиза выделяют различные гормоны, управляющие работой почти всей эндокринной системы человека. Исключение составляет поджелудочная железа и мозговая часть надпочечников. У них есть своя собственная система регуляции. 
Гормоны передней доли гипофиза 
Соматотропин-Обладает анаболическим воздействием, следовательно, как любой анаболик, СТ усиливает процессы синтеза (в особенности — белкового). Поэтому соматотропин называют часто «гормоном роста». 
При нарушении секреции соматотропина возникает три типа патологий. 
При снижении концентрации соматотропина человек развивается нормально, однако его рост не превышает 120 см - «гипофизарный нанизм». Такие люди (гормональные карлики) способны к деторождению и их гормональный фон не сильно нарушен. 
При повышении концентрации соматотропина человек так же развивается нормально, однако его рост превышает 195 см. Такая патология называется «гигантизм» В период пубертата (период активирования половой системы, начинающийся примерно в 11-13 лет. У юношей пубертат наступает на два года позже чем у девушек, чей гормональный скачок в отличие от юношей плавный и спад его довольно быстрый.) сильно увеличивается мышечная масса, следовательно увеличивается число капилляров. Сердце же не способно к такому быстрому росту. Из-за такого несоответствия возникают патологии. Например вегето-сосудистая дистония (ВСД), часто встречающаяся у подростков. 
После 20 лет выработка соматотропина снижается, следовательно и формирование хрящевой ткани (как один из аспектов роста) замедляется и уменьшается. Поэтому костная ткань потихоньку «съедает» хрящевую ткань, следовательно кости некуда расти, кроме как в диаметре. Если выработка соматотропина не прекращается после 20, то кости начинают расти в диаметре. За счёт такого утолщения кости утолщаются например пальцы, и из-за этого утолщения они почти теряют подвижность. При этом соматотропин так же стимулирует выработку соединительной ткани, вследствие чего увеличиваются губы, нос, ушные раковины, язык и т. д. Эта патология называется «акромегалия». 
Тиреотропин-Мишенью тиреотропина является щитовидная железа. Он регулирует рост щитовидной железы и выработку её основного гормона — тироксина. Пример действия релизинг-фактора: Тироксин необходим для повышения эффективности кислородного дыхания, для тироксина нужен тиреотропин, а для тиреотропина нужен тиреолиберин, который является релизинг-фактором тиреотропина. 
Гонадотропины-Название гонадотропины (ГТ) обозначает два разным гормона — фолликулостимулирующий гормон и лютеинизирующий гормон. Они регулируют деятельность половых желез — гонад. Как и другие тропные гормоны, гонадотропины в первую очередь влияют на эндокринные клетки гонад, регулируя выработку половых гормонов. Кроме того, они оказывают влияние на созревание гамет, менструальный цикл и связанные с ним физиологические процессы. 
Кортикотропные гормоны-Мишень КТ — кора надпочечников.Следует отметить, что паращитовидная железа регулирует минеральный обмен (с помощью парат-гормона), как и кора надпочечников, так что можно поставить регуляцию только на кору надпочечников, а паращитовидная железа автоматически будет работать в соответствии с корой надпочечников.

Билет 61 
ЗРИТЕЛЬНЫЙ АНАЛИЗАТОР система рецепторов, нервных центров мозга и соединяющих их путей, функция которой заключается в восприятии зрительных раздражений, их трансформации в нервные импульсы и передаче последних в корковые центры мозга, где формируется зрительное ощущение, в анализе и синтезе зрительных раздражений. В систему 3. а. включаются также пути и центры, обеспечивающие движения глаз и рефлекторные реакции зрачка на световое раздражение. 3. а. позволяет осуществлять прием и анализ информации в световом диапазоне — 760 нм), он является физиологической основой формирования зрительного образа. Возможности 3. а. определяются его энергетическими, пространственными, временными и информационными характеристиками. Энергетические характеристики определяются мощностью (интенсивностью) световых сигналов, воспринимаемых глазом. К ним относятся диапазон воспринимаемых яркостей, контраст и цветоощущение. Пространственные характеристики 3. а. определяются воспринимаемыми глазом размерами предметов и их месторасположением в пространстве. В их число входят: острота зрения, поле зрения, объем зрительного восприятия. Временные характеристики определяются временем, необходимым для возникновения зрительного ощущения при тех или иных условиях работы оператора. К ним относятся латентный (скрытый) период зрительной реакции, длительность инерции ощущения, критическая частота слияния мельканий, время адаптации, длительность информационного поиска. Основной информационной характеристикой 3. а. является пропускная способность, т. е. то максимальное количество информации, которое 3. а. способен принять в единицу времени. Учет этих характеристик необходим при проектировании как отдельных индикаторов, так и систем отображения информации. Исходя из характеристик 3. а., определяются яркость и контраст изображения, размеры знаков и их отдельных деталей, месторасположение их в поле зрения оператора, временные параметры предъявляемой информации, темп поступления сигналов оператору и т. д. Организуя работу оператора, следует осмотрительно относиться к резервным возможностям 3. а. С этой целью необходимо решать вопрос о необходимости разгрузки 3. а. Этот вопрос может решаться за счет использования возможностей взаимодействия анализаторов, соБилет 62 
Слуховой анализатор — совокупность соматических, рецепторных и нервных структур, деятельность которых обеспечивает восприятие человеком и животными звуковых колебаний. С. а. состоит из наружного, среднего и внутреннего уха, слухового нерва, подкорковых релейных центров и корковых отделов. 
Ухо является усилителем и преобразователем звуковых колебаний. Через барабанную перепонку, представляющую собой эластичную мембрану, и систему передаточных косточек — молоточек, наковальню и стремечко — звуковая волна доходит до внутреннего уха, вызывает колебательные движения в заполняющей его жидкости. 
Внутреннее ухо, или улитка, представляет собой спиралеобразный ход, состоящий из двух с половиной витков. Заполняющая улитку жидкость — пери- и эндолимфа — практически несжимаема; поэтому при смещении стремечка вправо мембрана круглого окна прогибается влево, а возникающие колебания эндолимфы передаются волокнам расположенной вдоль улитки базилярной, или основной, мембраны и возбуждают специализированные механорецепторы — волосковые клетки. 
Волосковые клетки улитки являются основными аппаратами слуховой рецепции. Реагируя на колебания эндолимфы, они превращают улавливаемые звуковые колебания в нервные импульсы, передающие акустическую информацию по волокнам слухового нерва. 
Возбуждение, возникающее в волокнах слухового нерва, направляется к центральным отделам нервной системы. Первым центром обработки акустической информации являются расположенные на уровне варолиева моста ядра слухового нерва, после чего она поступает к т.н. верхним оливам. Здесь происходит объединение сигналов, поступающих от левой и правой улитки. Затем афферентные пути слухового нерва направляются к нижним буграм четверохолмия, которые представляют собой элементарный рефлекторный центр слуховой системы. Именно здесь осуществляется передача слуховых импульсов на двигательные пути, в результате чего возникают такие, напр., реакции, как двигательное настораживание или сокращение зрачка в ответ на внезапно возникающий звук. 
Далее мощный пучок нервных волокон идет к внутренним коленчатым телам, от которых начинается последняя часть слухового нерва. Его волокна направляются к поперечной извилине височной области коры, или извилине Гешля, представляющей собой корковый конец С. а. 
По своему строению извилина Гешля (поля 41-е и 42-е, по Бродману) очень близка к проекционной зрительной коре. Основное место в ней занимает 4-й афферентный слой, в котором и заканчиваются волокна слухового нерва. Как в зрительной проекционной области, так и в извилине Гешля были обнаружены признаки соматотопического строения. При этом волокна, передающие информацию о высоких тонах, заканчиваются в медиальных, а волокна, несущие информацию о низких тонах, — в латеральных участках этой извилины. Существенным отличием корковых отделов слухового анализатора от зрительного является то, что здесь нет изолированного представительства каждого уха или его части в противоположном полушарии коры головного мозга. Моноуральные волокна направляются к обоим полушариям, и поэтому повреждение одной (напр., правой) извилины Гешля приводит лишь к незначительному снижению слуха, в несколько большей степени проявляющемуся в противоположном (левом) ухе. 
Над первичными отделами слуховой коры, расположенными в извилине Гешля, надстроены вторичные отделы слуховой коры. Они находятся на наружной поверхности височной области, в пределах верхней височной извилины (поле 22-е, по Бродману). В их составе преобладают клетки верхних, ассоциативных слоев коры. 
В отличие от первичной слуховой коры ее вторичные отделы не имеют соматотопического строения и представляют собой сложный интегрирующий аппарат, который обеспечивает сложные формы анализа и синтеза звуковой информации, делая возможным восприятие сложномузыкальных и речевых звуков, поэтому поражение вторичных отделов слуховой коры не приводит к снижению остроты слуха и выпадению восприятия простых звуков, вызывает нарушение различения мелодий в одних случаях или сложно построенных звуков речи в других.

здания полисенсорных  систем отображения информации.

Билет 63 
Его периферический отдел находится в коже. Это болевые, осязательные и температурные рецепторы. Болевых рецепторов около миллиона. Возбуждаясь, они создают ощущение боли, что вызывает защитную реакцию организма. 
Осязательные рецепторы вызывают ощущение давления и соприкосновения. Эти рецепторы играют существенную роль в познании окружающего мира. С помощью осязания мы определяем не только, гладкая или шероховатая поверхность у предметов, но и их величину, а иногда и форму. 
Не менее важно осязание и для двигательной деятельности. В движении человек соприкасается с опорой, предметами, воздухом. Кожа в одних местах растягивается, в других — сжимается. Все это раздражает осязательные рецепторы. Сигналы от них, поступающие в чувствительно-двигательную зону, коры полушарий, помогают ощутить движение всего тела и его частей. Температурные рецепторы представлены холодовымиитепловыми точками. Они, как и другие рецепторы кожи, распределены неравномерно.  
Наиболее чувствительна к воздействию температурных раздражителей кожа лица и живота. Кожа ног по сравнению с кожей лица в два раза менее чувствительна к холоду и в четыре — к теплу. Температурные раздражители помогают ощущать структуру комбинации движений и скорость. Происходит это потому, что при быстром изменении положения частей тела или большой скорости передвижения возникает прохладный ветерок. Он воспринимается температурными рецепторами как изменение температуры кожи, а осязательными — как прикосновение воздуха.

Билет 64 
Обонятельный анализатор — нейрофизиологическая система, осуществляющая анализ пахучих веществ, которые воздействуют на слизистую оболочку носовой полости. О. а. состоит из периферического отдела (обонятельные рецепторы), специфических проводящих нервных путей (обонятельный нерв и центральный обонятельный путь), подкорковых нервных структур (сосковидные тела) и коркового отдела (извилина морского коня). 
Периферическим отделом О. а. служат рецепторные поверхности, расположенные в слизистой оболочке верхней части носовой перегородки. Обонятельный рецептор состоит из т. н. биполярного нейрона размером 5 — 10 мк и периферической части — палочкообразного отростка (шириной около 1 мк и длиной 20 — 90 мк), заканчивающегося обонятельным пузырьком, на котором симметрично расположены 9 — 16 ресничек (диаметром 0,1 — 0,2 мк), непосредственно вступающих в контакт с пахучими веществами. Аксоны биполярных нейронов, собираясь в пучок обонятельного нерва, проникают через отверстия в продырявленной пластинке решетчатой кости в полость черепа и входят в обонятельную луковицу. Из митральных клеток обонятельной луковицы начинается центральный обонятельный путь, который заканчивается в височных базальных отделах мозга в области извилины морского коня. Подкорковыми нервными структурами являются т.н. сосковидные тела. 
Пахучие вещества проникают в слизистую оболочку носа при вдыхании через нос или рот. Минимальная концентрация пахучего вещества, вызывающего обонятельное ощущение, называется абсолютным порогом чувствительности. О. а. человека имеет высокую чувствительность. Некоторые пахучие вещества (ванилин, валерьяновая кислота) вызывают чисто обонятельные ощущения. Другие пахучие вещества вызывают наряду с обонятельными также и температурные, тактильные, болевые и вкусовые ощущения (напр., хлороформ — сладкий вкус, ментол и камфора — холод и др.). 
Важным свойством О. а. является адаптация (уменьшение чувствительности) к длительному раздражению пахучим веществом. Одновременное действие нескольких пахучих веществ приводит к их смешению. В некоторых случаях происходит подавление одного запаха другим. Возможны нейтрализация запахов, когда смесь не вызывает обонятельного ощущения; появление нового запаха; последовательная смена запахов; увеличение чувствительности к одному запаху после действия другого и др. явления, возникающие при смешении запахов.

Информация о работе Шпаргалка по "Анатомии"