Автор работы: Пользователь скрыл имя, 12 Июня 2012 в 22:47, реферат
Первая современная космологическая теория была предложена Эйнштейном в 1917 г. в качестве следствия его формулировки общей теории относительности. Эйнштейн показал, что общая теория относительности однозначно объясняет возможность существования статической Вселенной, которая не изменяется со временем. Как мы сейчас понимаем, этого не может быть, но в то время казалось, что это важный успех общей теории относительности. Этот парадокс, по-видимому, был связан с тем, что еще из представлений ученых Древней Греции и Египта утвердилось мнение о незыблемости, стационарности Вселенной, и модель Эйнштейна как будто подтвердила это. Однако уже в 1922 г. А. Фридман показал, что из самих уравнений общей теории относительности следует нестационарность, т.е. развитие Вселенной. Обосновывая в 1917 г. общую теорию относительности, А. Эйнштейн ввел понятие космологического члена λ (постоянной) как раз для обоснования статичности его модели Вселенной, о чем, я думаю не без влияния А. Фридмана, в 1923 г. писал: «Прочь космологическую постоянную!» По свидетельству Г. Гамова А. Эйнштейн считал «введение космологической постоянной самой грубой ошибкой своей жизни».
1. Космологическая модель А. Эйнштейна — А.А. Фридмана
Первая современная космологическая теория была предложена Эйнштейном в 1917 г. в качестве следствия его формулировки общей теории относительности. Эйнштейн показал, что общая теория относительности однозначно объясняет возможность существования статической Вселенной, которая не изменяется со временем. Как мы сейчас понимаем, этого не может быть, но в то время казалось, что это важный успех общей теории относительности. Этот парадокс, по-видимому, был связан с тем, что еще из представлений ученых Древней Греции и Египта утвердилось мнение о незыблемости, стационарности Вселенной, и модель Эйнштейна как будто подтвердила это. Однако уже в 1922 г. А. Фридман показал, что из самих уравнений общей теории относительности следует нестационарность, т.е. развитие Вселенной. Обосновывая в 1917 г. общую теорию относительности, А. Эйнштейн ввел понятие космологического члена λ (постоянной) как раз для обоснования статичности его модели Вселенной, о чем, я думаю не без влияния А. Фридмана, в 1923 г. писал: «Прочь космологическую постоянную!» По свидетельству Г. Гамова А. Эйнштейн считал «введение космологической постоянной самой грубой ошибкой своей жизни».
Космологическая постоянная была не чем иным, как приемом, который студент-первокурсник назвал бы «коэффициент вранья» — абсолютно субъективной подгонкой к тому объективному решению, которое ему хочется получить. Этот «коэффициент» позволил его уравнениям дать желаемый А. Эйнштейну результат.
А. Фридман утверждал, что искривленное пространство не должно быть стационарным, оно должно или расширяться, или сжиматься. И Эйнштейн вынужден был публично согласиться с выводами Фридмана.
К сожалению, работы Фридмана, в частности его книга «Мир как пространство и время», умалчивались вплоть до последнего времени, а автором теории расширяющейся Вселенной объявили аббата Ж. Леметра, президента папской академии наук в Ватикане. В значительной мере это связано с идеологической компанией, развернутой в СССР в 30—50-е годы. Стационарная, бесконечная в пространстве и времени Вселенная фигурировала и в философии Канта, Гегеля и Энгельса и была «узаконена» марксистско-ленинской философией. Все другие представления были объявлены ошибочными и лженаучными, в том числе и сама общая теория относительности Эйнштейна.
Через какое-то время теория расширяющейся Вселенной была подтверждена экспериментально. Из оптических наблюдений звезд было установлено, что кроме нашей Галактики, звездного скопления в виде Млечного пути, существует огромное количество других галактик. По смещению световых лучей к красному концу видимого спектра можно определить скорость движения объекта относительно наблюдателя. В более общем виде — это так называемый эффект Доплера при распространении волны любой природы и движении источника этой волны относительно наблюдателя. Например, звуковой сигнал движущегося поезда относительно неподвижного наблюдателя на платформе будет выше, когда поезд приближается к нам. И ниже, когда он от нас удаляется. С помощью эффекта Доплера экспериментально наблюдали и измеряли радиальные движения (от нас или к нам) отдельных звезд, а затем и галактик. Было установлено, что если звезда движется к нам, то спектральные линии смещаются к фиолетовому концу спектра, если от нас — то к красному концу.
При анализе изучения далеких галактик получили удивительный результат: у всех галактик наблюдали красное смещение! Поэтому можно считать, что они удаляются от нас. Причем величина этого красного смещения и, следовательно, скорость разбегания. галактик — больше для более удаленных галактик (что само по себе чрезвычайно удивительно, и до сих пор причина этого не выяснена). Американский астроном, Э. Хаббл (1889—1953) установил в 1929 г. закон:
V=Hr,
где V — лучевая скорость, r— расстояние до объекта, Н — постоянная Хаббла, равная ~ (3 — 5)10-18 с-1 и названная так в его честь. Этот закон экспериментально подтвердил расширение Вселенной. Из Н можно определить возраст Вселенной (t ~ 1/Н), который оценивается в 10—20 миллиардов лет. По данным радиоактивного распада некоторых веществ возраст Земли определяется в 5 миллиардов лет.
Если все галактики удаляются от нас, то возникает вопрос: не занимаем ли мы особого положения во Вселенной? Простой физический опыт не дает оснований полагать, что это так. Предположим, что мы надуваем воздушный шарик, на поверхности которого равномерно нанесены пятнышки. По мере того как шарик будет раздуваться, наблюдателю, находящемуся на одном из пятнышек, будет казаться, что все другие пятнышки удаляются от него. Более того, ему будет казаться, что более далекие пятнышки удаляются значительно быстрее, чем те, которые расположены близко. Такие же результаты получаются, естественно, при наблюдении с любого другого пятнышка. Таким образом, при однородном расширении будут увеличиваться все расстояния между пятнышками. Поэтому измерение красного смешения обычно трактуется как очевидное доказательство того, что Вселенная расширяется. Так как расширение, по-видимому, происходит равномерно во все стороны, то «центра» Вселенной явно выделить нельзя. Естественно, остается много вопросов: почему Вселенная расширяется, будет ли она расширяться дальше или сожмется? Конечна она или бесконечна? Как образуются галактики, из чего состоят? И т.д.
2. Другие модели происхождения Вселенной
В историческом аспекте первыми моделями Вселенной были модели Солнечной системы, в центре которой располагалась неподвижная Земля, неподвижная сфера со звездами и подвижные 5 планет, Солнце и Луна. Затем Аристарх Самосский в III в. до н. э. предложил гелиоцентрическую систему, возрожденную польским священником Н. Коперником в 1514 г. Сюда же можно отнести и античную систему Птолемея, согласно которой за последней сферой располагались ад и рай. Кстати, «модернизацией» этой модели занимались и И. Кеплер (1571—1630) (эллиптические орбиты вместо круговых) и Г. Галилей. Все это продолжалось до появления законов Ньютона в небесной механике в XVIII в. Уже в это время (а идеи Джордано Бруно еще ранее — в XVI в.) возникли представления о бесконечной Вселенной. В XIX в. они развились в представления о бесконечной в пространстве, но неизменной во времени Вселенной. Это была стационарная космологическая модель, которая по сути близка статической Вселенной Эйнштейна.
Предполагалось, что пространство — абсолютно, однородно и изотропно, а время — абсолютно и однородно, т.е. использовались «строительные материалы» классической механики и евклидовой геометрии. Это устраивало теологический подход к пониманию мира: система мира без начала и конца, как в пространственном, так и во временном понимании. Бог создал — и все! С материалистической точки зрения можно предположить, что Бог в теологии — это и есть пространство и время в физике. Получалось, что мир в целом не эволюционирует. Пространство и время представлялись как жесткий каркас (они же абсолютные!) и не участвовали в процессах, т.е. рассматривались как параметры. Выражаясь на языке гуманитариев, можно сказать — оставались «равнодушными» на такой сцене жизни. Заметим при этом, что если неизменность пространства и времени вызывала некоторый дискомфорт, то бесконечность мира частично это неудобство сглаживала. Можно даже сказать, что стационарная модель мира выполняла как бы роль стыковочного узла между культурами Запада (рационализм) и Востока (мистицизм). Как мы уже знаем, в общей теории относительности Эйнштейн предположил, что пространство и время не абсолютны, а относительны и связаны между собой, причем скорость передачи взаимодействия конечна и равна скорости света с. Было показано, что геометрия пространства и времени не является евклидовой и определяется наличием материи в данной области. Пространство и время приобретают динамические свойства, им приписывается кривизна, которая влияет на характер движения тел в данной области и которая сама зависит от наличия и движения тел. Пространство и время уже не «равнодушная» сцена событий, а активные участники, влияющие на события, регулирующие их.
В настоящее время существует много космологических концепций, и нельзя, естественно, сказать, что уже установлена истина в последней инстанции, учитывая еще указанную сложность астрофизических и космологических экспериментов.
2.1.Модель Большого Взрыва
Однако одна из уже современных таких теорий — теория Большого Взрыва (Big Bang) смогла к настоящему времени объяснить почти все факты, связанные с космологией.
В основе этой теории лежит предположение, что физическая Вселенная образовалась в результате гигантского взрыва примерно 15—20 миллиардов лет назад, когда все вещество и энергия, современной Вселенной были сконцентрированы в одном сгустке с плотностью свыше 1025 г/см3 и температурой свыше 1016 К. Такое представление соответствует модели горячей Вселенной. Модель Большого Взрыва была предложена в 1948 г. нашим соотечественником Г. А. Гамовым.
Возвращаясь к сгустку перед Большим Взрывом, отметим, что неизвестно достоверно, как этот сгусток образовался. Из чего? И откуда взялось такое гигантское количество изначальной энергии? Тем не менее огромное радиационное давление внутри этого сгустка привело к необычайно быстрому его расширению — Большому Взрыву. Составные части этого сгустка теперь образуют далекие галактики, очень быстро удаляющиеся от нас. Мы наблюдаем их сейчас такими, какими они были примерно 10—14 млрд лет назад. Таким образом, расширение Вселенной оказывается естественным следствием теории Большого Взрыва. Заметим здесь, что открытие расширяющейся Вселенной и принятие научным сообществом этого факта можно считать огромным мировоззренческим прорывом в интеллектуальном мире.
Г. А. Гамов также предположил, что все элементы Вселенной образовались в результате ядерных реакций в первые моменты после Большого Взрыва. Дальнейшие уточнения этой теории показали, что ядерные реакции действительно имели место, но привели только к образованию гелия. Спектр гелия наблюдали в солнечном излучении до того, как он был обнаружен на Земле, отсюда и название этого элемента происходит от греческого Гелиос — Солнце. Современные методы анализа излучения звезд и галактик показали, что почти все они состоят из водорода (~60%) и гелия (~20%). Лишь малая часть водорода и гелия содержится в звездах, остальное количество распределено в межзвездном пространстве. В звездах, где температура исключительно велика, атомы полностью ионизированы и составляют высокотемпературную плазму. В межзвездном пространстве водород и гелий находятся в основном в атомарном состоянии. Таким образом, теория Большого Взрыва согласуется с наблюдаемой распространенностью гелия во Вселенной.
Рассмотрим вариант образования сгустка первовещества. Предполагается, что эти межзвездные атомы водорода и гелия служат сырьем для образования новых звезд. Заметим, что распределение газа в межзвездном пространстве неоднородно. Средняя концентрация вещества в нашей Галактике ~1 атом/см3, однако имеются сильные флуктуации. Эти флуктуации плотности объясняются хаотическим движением атомов в пространстве. Случайно плотность вещества в определенной области может существенно превысить среднюю. При этом предполагается, что если количество вещества превысит в какой-либо области критическое значение, порядка 1000 солнечных масс, то в этой области возникают достаточно сильные гравитационные поля, способные противостоять разлету газового облака и стремящиеся сжать его до возможно меньших размеров. Тогда возникает гипотеза: образование из межзвездной пыли сгустка, гигантское уплотнение и взрыв.
2.2.Реликтовое излучение
Наиболее важным подтверждением теории БВ является обнаружение реликтового излучения, как раз и связанного, по-видимому, с существованием первоначального сверхплотного сгустка вещества и излучения. Название «реликтовое излучение» ввел отечественный астрофизик И. С. Шкловский (1916—1985). Первоначально оно обладало огромной энергией, но расширение и охлаждение сгустка привели к тому, что излучение также «остыло» и энергия квантов уменьшилась, т.е. возросла длина их волны. Это фоновое излучение и сейчас существует во Вселенной, но теперь уже в виде радиоволн, микроволнового и инфракрасного излучения. Температуру реликтового излучения рассчитал Г. А. Гамов. Она составляет около 3 К, согласно современным данным 2,74 К. В последние годы экспериментально обнаружена анизотропия (неравномерность) реликтового излучения, которую связывают с неоднородностями распределения материи и наличием слабых возмущений.
Рассматривая такой сгусток вещества и излучения, мы должны понимать, что его нельзя рассматривать как бы со стороны, с далекого расстояния, и считать, что он расширяется по направлению к нам (или от нас). Сгусток есть не что иное, как сама Вселенная, и Земля находится внутри него. Внутри же сгустка при расширении его все остальное вещество во Вселенной движется в направлении от Земли (вспомним шарик с пятнышками) или от любого куска вещества в сгустке. Поэтому излучение сгустка бомбардирует Землю со всех сторон. Любой наблюдатель во Вселенной должен регистрировать это излучение с равной интенсивностью с любого направления в пространстве.
Так как расширение продолжается ~14 — 20 • 1010 лет, то согласно теории огромная начальная температура уменьшилась к настоящему времени до средней температуры Вселенной — порядка 3 К. Максимум в распределении длин волн, соответствующий излучению источника с такой температурой в 3 К, должен приходиться на длину волны 0,1 см. Это означает, что если теория Большого Взрыва верна, то должны экспериментально наблюдаться два эффекта: спектр излучения Вселенной должен соответствовать равновесному излучению при 3 К, и это излучение должно приходить с равной интенсивностью с любого направления в пространстве, т.е. быть изотропным.
Начиная с 1965 г. были проведены многочисленные измерения, обнаружившие космические радиоволны с малой энергией, которые можно интерпретировать как равновесное излучение остывшего, но все еще расширяющегося сгустка, причем с длиной волны, соответствующей Т = 3 К. Любопытно, что это открытие произошло в известном смысле случайно. Его сделали американские радиоастрономы А. Пензиас и Р. Уилсон, которые ничего не слышали о предсказании теории Г. А. Гамова, и цель их работы не была связана с космологией. А. Пензиас и Р. Уилсон использовали для излучения радиационных характеристик космологического пространства так называемую рожковую антенну, первоначально сконструированную для системы связи через американский спутник «Эхо». Эта специальная антенна принимала радиосигналы только из небольшого участка неба, на который она направлена. Они обнаружили, что независимо от направления антенны в принимаемом сигнале присутствовала существенная по величине энергия, соответствующая микроволновому участку спектра и температуре около 3,5 К. Все выглядело так, как если бы вся Вселенная была пронизана этим микроволновым фоном. Тем не менее значение их наблюдений стало общепризнанным и они в 1968 г. получили Нобелевскую премию. Это было самое крупное наблюдательное открытие в космологии со времени обнаружения Хабблом в 1929 г. явления разбегания галактик. Оно резко изменило статус космологии как фундаментальной науки (ранее к ней относились как к достаточно абстрактной и умозрительной: «повсюду считалось, что изучение ранней Вселенной это не та задача, которой должен посвящать свое время уважающий себя ученый») и изменило отношение к трудам А. А. Фридмана и Г. А. Гамова. Таким образом, были получены некоторые экспериментальные доказательства справедливости теории Большого Взрыва. И. М. Дмитриевский связывает поток реликтового излучения с ходом времени, или потоком времени, по Н. А. Козыреву, который, согласно его гипотезе, является источником звездной энергии.
Информация о работе Основы современных представлений о строении и эволюции Вселенной