Органы государственного надзораза состоянием охраны труда, их функции и полномочия

Автор работы: Пользователь скрыл имя, 22 Октября 2014 в 18:50, контрольная работа

Краткое описание

Всю систему надзора и контроля по охране труда, предусмотренную законодательством, условно разделяют на государственный надзор, ведомственный, административный и общественный контроль
соответствии с существующим законодательством надзор и контроль за соблюдением законодательства о труде и правил охраны труда осуществляют:
• Специальные государственные органы и инспекции, деятельность которых не зависит от администрации предприятия, учреждений, организаций и их вышестоящих органов;

Вложенные файлы: 1 файл

БЖ.docx

— 156.92 Кб (Скачать файл)

Радиационная блокировка основана на применении радиоактивных изотопов. Ионизирующие излучения, направленные от источника, улавливаются измерительно – командным устройством, которое управляет работой реле. При пересечении луча измерительно – командное устройство подает сигнал на реле, которое разрывает электрический контакт и отключает оборудование.

Ограничительные устройства.

Это элементы механизмов и машин, рассчитанные на разрушение (или несрабатывание) при перегрузках.

К таким элементам относятся:

* срезные штифты и шпонки, соединяющие вал с приводом;

* фрикционные муфты, не  передающие движения при больших  крутящих моментах и т.п.

Их делят на две группы:

*  элементы с автоматическим восстановлением кинематической цепи после того, как контролируемый параметр пришел в норму (например, фрикционные муфты);

* элементы с восстановлением  кинематической связи путем её  замены (например, штифты и шпонки).

Тормозные устройства.

По конструктивному исполнению их подразделяют на:

 колодочные; дисковые; конические;  клиновые.

Чаще всего используют колодочные и дисковые тормоза.

Примером таких тормозов могут являться тормоза автомобилей.

Устройства автоматического контроля и сигнализации

Устройства контроля − это приборы для измерения давлений, температуры, статических и динамических нагрузок и других параметров, характеризующих работу оборудования и машин.

Эффективность их использования значительно повышается при объединении с системами сигнализации.

Устройства автоматического контроля и сигнализации подразделяют:

по назначению:

 информационные; предупреждающие;  аварийные;

по способу срабатывания:

 автоматические; полуавтоматические.

Для сигнализации применяют следующие цвета:

 красный − запрещающий;  желтый − предупреждающий; зеленый − извещающий; синий − сигнализирующий.

Видом информационной сигнализации являются различного рода схемы, указатели, надписи.

Устройства дистанционного управления (стационарные и передвижные) наиболее надежно решают проблему обеспечения безопасности, так как позволяют осуществлять управление работой оборудования с участков за пределами опасной зоны.

Знаки безопасности.

Их вид регламентирован ГОСТ Р 12.4026−01.

Они могут быть:

запрещающими; предупреждающими; предписывающими; указательными; пожарными; эвакуационными; медицинскими.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.ЯВЛЕНИЕ РАСТЕКАНИЯ ТОКА В ЗЕМЛЕ( причины, изменения физических характеристик в зоне растекания ток, правила поведения человека, оказавшегося в такой зоне).

В процессе эксплуатации электроустановок возможны случаи, когда по земле будет протекать ток. Протекание тока может быть преднамеренным (использование земли в качестве провода) или случайным (замыкание токоведущей части на заземленный корпус электроустановки, падение провода на землю). Стекание тока в землю сопровождается возникновением на заземлителе и поверхности земли вокруг него потенциалов. Возникающую при этом картину поля рассмотрим на примере одиночного полусферического заземлителя на поверхности земли (рис.1).

Приращение потенциала на элементарном слое полусферических поверхностей вокруг заземлителя (считаем грунт однородным)

Тогда приращение потенциала на элементарном слое можно записать

Интегрируя по Х, в пределах от Х до ∞, получаем выражение, характеризующее поле растекания потенциала в земле:

Таким образом, потенциал на поверхности земли вокруг заземлителя изменяется по закону гиперболы, уменьшаясь от своего максимального значения непосредственно на заземлителе

до нуля по мере удаления от заземлителя. Теоретически поле растекания простирается до бесконечности, однако для одиночного заземлителя уже на расстоянии около 20 м площадь слоя земли настолько велика, что плотность тока здесь практически равна нулю. Поэтому потенциал в точках, удаленных на 20 м и более от заземлителей, можно принимать равным нулю.

Проведенный анализ показывает, что грунт в поле растекания ведет себя как обычное сопротивление, уменьшая потенциал от некоторого значения в месте ввода тока в землю до нуля.

Сопротивлением заземляющего устройства, или сопротивлением растеканию тока данного заземлителя, называется сопротивление грунта поля растекания, создаваемого проводящим элементом, с которого в землю стекает ток.

Специальный анализ, выходящий за рамки настоящей работы, показывает, что величина сопротивления этой области грунта зависит от формы, количества и расположения элементов, создающих поле растекания, и удельного сопротивления земли.

В нашем случае сопротивление растеканию тока полусферического заземлителя можно определить как

Падение напряжения на сопротивлении полусферического заземлителя

Деля это выражение на ток, получаем окончательно для сопротивления растеканию тока полусферического заземлителя

В реальных условиях, когда грунт вокруг заземлителя неоднороден, распределение потенциала происходит не по гиперболе, а по более сложной кривой, и выражение для сопротивления растеканию тока будет более сложным.

Протекание токов в земле представляет определенную опасность для человека. Это связано с возникновением напряжения прикосновения и шагового напряжения.

Напряжением прикосновения называется разность потенциалов двух точек электрической цепи, которых одновременно касается человек.

В случае касания человеком корпуса заземленной установки, на которой произошло замыкание токоведущей части, под напряжением прикосновения понимается разность между потенциалом рук, касающихся корпуса, и потенциалом основания, на котором стоит человек (рис.1). Пренебрегая падением напряжения в заземляющих проводниках, можно считать, что потенциал рук равен потенциалу заземлителя, а напряжение прикосновения

Поскольку φз– величина постоянная, напряжение прикосновения определяется формой кривой распределения потенциала, оно возрастает по мере удаления от заземлителя. Практически при расстояниях, превышающих 20 м, напряжение прикосновения постоянно и имеет наибольшее значение, при этом λ1=1. Если прикосновение происходит около заземлителя, то напряжение прикосновения равно нулю и λ1=0.

Шаговым напряжением называется разность потенциалов двух точек на поверхности земли в зоне растекания тока, которые находятся на расстоянии шага и на которых одновременно стоит человек (рис.1):

где а – длина шага (обычно в расчетах принимается равной 0.8 м).

Поскольку φхи φх+аявляются частями потенциала заземлителя, то выражение шагового напряжения можно записать в виде

где–коэффициент шага, учитывающий форму кривой распределения потенциала.

Максимальным значение напряжения шага будет при наименьшем расстоянии от заземлителя, когда человек одной ногой стоит непосредственно на заземлителе, а другой – на расстоянии шага от него. Наименьшим значение шагового напряжения будет при бесконечно большом удалении от заземлителя, а практически – за пределами поля растекания тока, т.е. далее 20 м.

Шаговое напряжение зависит от ширины шага, удаления идущего человека от заземлителя, а также удельного сопротивления грунта

При этом выходить из зоны растекания тока рекомендуется, перемещаясь прыжками на одной ноге и располагая ступню вдоль линии равного потенциала. 

Если человек окажется в зоне растекания тока и будет стоять а поверхности земли, имеющей разные потенциалы в местах, где расположены ступни ног, то на длине шага возникнет напряжение шага, соответствующее разности этих потенциалов. Через тело человека будет проходить электрический ток, опасность которого зависит от его значения. Чтобы исключить попадание человека под Напряжение шага, не следует приближаться к месту повреждения на ( расстояние менее 4 - 5 м в закрытых помещениях и 8 - 10 м яа открытых подстанциях. Только в крайнем случае для ликвидации аварии или для оказания первой помощи пострадавшему можно приблизиться к месту повреждения на меньшее расстояние  при этом следует использовать защитные средства: боты, галоши, коврики, деревянные лестницы, доски или другие плохо проводящие электрический ток предметы. 

 

5. Автоматические  системы пожаротушения

Автоматические системы пожаротушения служат для быстрого реагирования на признаки возгорания и предотвращения пожара. Их можно сравнить с пожарной командой, постоянно находящейся на объекте. 
Автоматические системы пожаротушения могут быть установлены практически в любом помещении. Наиболее актуальными местами размещения подобных систем являются большие стоянки закрытого типа, серверные комнаты, производственные помещения, где существует возможность возгорания в ходе процесса производства, архивы документов и т. д.

Целью применения автоматических установок пожаротушения является локализация и тушение очагов возгорания, сохранение жизней людей и животных, а также недвижимого и движимого имущества. Использование подобных средств является наиболее эффективным методом борьбы с пожарами. В отличие от ручных средств пожаротушения и систем сигнализации, они создают все необходимые условия для результативной и оперативной локализации пожаров с минимальным риском для здоровья и жизни.

Схема системы автоматического пожаротушения

Необходимо помнить, что при монтаже автоматических систем пожаротушения, их наладке и сервисном обслуживании нужно строго соблюдать ряд правил и требований действующих нормативных документов. Чтобы быть уверенным в надежности системы все работы должны производиться квалифицированными специалистами организации, которая предоставит гарантию на спроектированную и поставленную систему пожаротушения.

 

Классификация автоматических систем пожаротушения.

Обычно системы автоматического тушения классифицируют по применяемому огнетушащему веществу. По этому основанию выделяют следующие типы установок:

  • водяные;

  • порошковые;

  • газовые;

  • пенные;

  • аэрозольные.

Рассмотрим основные виды систем автоматического пожаротушения более подробно:

1. Водяные установки.

Водяные установки бывают спринклерные и дренчерные. Спринклерные установки предназначены для локального тушения очагов пожара в быстровозгораемых помещениях, например, деревянных, а дренчерные — для тушения пожара сразу на всей территории объекта.

 

Пример системы водяного пожаротушения

В спринклерных системах тушения ороситель (спринклер) монтируется в трубопровод, заполненный водой, специальной пеной (если в помещении температура выше 5°С) или воздухом (если в помещении температура ниже 5°С). При этом огнетушащее вещество постоянно находится под давлением. Существуют комбинированные спринклерные системы, в которых подводящий трубопровод заполнен водой, а питающий и распределительный — могут заполняться воздухом или водой в зависимости от сезона. Ороситель закрыт тепловым замком, который представляет собой специальную колбу, рассчитанную на разгерметизацию при достижении определенной температуры окружающей среды.

Информация о работе Органы государственного надзораза состоянием охраны труда, их функции и полномочия