Автор работы: Пользователь скрыл имя, 26 Июля 2014 в 07:59, реферат
Вскоре после того, как было обнаружено инфракрасное излучение, немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и в противоположном конце спектра, с длиной волны короче, чем у фиолетового цвета. В 1801 году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Тогда, многие ученые, включая Риттера, пришли к соглашению, что свет состоит из трех отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и ультрафиолетового компонента. В то время ультрафиолетовое излучение называли также «актиническим излучением».
ВВЕДЕНИЕ……………………………………………………………………...3
1.Природа УФ-излучения………………………………………………………...5
2.Влияние УФ-излучения на биосферу………………………………………….6
3. Действие УФ-излучения на клетки……………………………………………8
4. Применение УФ-излучения в качестве бактерицидного средства………...13
5. Положительное и отрицательное воздействие УФ-лучей………………….15
6. Защита от УФ-излучения……………………………………………………..17
7. Влияние УФ-излучения на микроорганизмы……………………………….17
8.Радиационная микробиология………………………………………………...22
ЗАКЛЮЧЕНИЕ…………………………..…………………………………….25
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ…………………….……..28
СОДЕРЖАНИЕ
ВВЕДЕНИЕ…………………………………………………………
1.Природа УФ-излучения……………………
2.Влияние УФ-излучения на биосферу………………………………………….6
3. Действие УФ-излучения на клетки……………………………………………8
4. Применение УФ-излучения в качестве бактерицидного средства………...13
5. Положительное и отрицательное воздействие УФ-лучей………………….15
6. Защита от УФ-излучения……………………
7. Влияние УФ-излучения на микроорганизмы……………………………….17
8.Радиационная микробиология……
ЗАКЛЮЧЕНИЕ…………………………..……………………
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ…………………….……..28
ВВЕДЕНИЕ
Понятие об ультрафиолетовых лучах в первый раз встречается у индийского философа 13-го века Shri Madhvacharya в его труде Anuvyakhyana. Атмосфера описанной им местности Bhootakasha содержала фиолетовые лучи, которые невозможно увидеть обычным глазом.
Вскоре после того, как было обнаружено инфракрасное излучение, немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и в противоположном конце спектра, с длиной волны короче, чем у фиолетового цвета. В 1801 году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Тогда, многие ученые, включая Риттера, пришли к соглашению, что свет состоит из трех отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и ультрафиолетового компонента. В то время ультрафиолетовое излучение называли также «актиническим излучением».
Излучение солнца имеет электромагнитную колебательную природу и носит непрерывный характер. Этот спектр излучений можно разделить на несколько областей – рентгеновское излучение – ниже 2 нм, УФ-излучение – 2 – 400 нм, видимый участок спектра 400 – 750 нм и инфракрасное излучение – выше 750 нм. Энергия квантов УФ-излучения (70 – 140 ккал/моль) превосходит энергию активации большинства химических реакций. В связи с данным обстоятельством УФ-радиация является весьма фотохимически активной частью спектра. Ультрафиолетовое излучение в области 180 – 2 нм интенсивно поглощается кислородом воздуха. В связи с данным обстоятельством оно реально существует лишь в космическом пространстве либо в специальных лабораторных условиях.
УФ-излучение является постоянно действующим фактором внешней среды, оказывающим мощное воздействие на многие физиологические процессы, протекающие в организме. Также оно сыграло важную роль в эволюционных процессах, протекавших на Земле. Прежде всего УФ-излучение наряду с космическими лучами и радиоактивными элементами земной коры, с электрическими разрядами в атмосфере, извержениями вулканов и ударами метеоритов, было важнейшим фактором, способствовавшим абиогенному синтезу органических соединений на Земле. Мутагенное действие УФ-излучения на простейшие формы жизни стимулировало ход биологической эволюции, способствовало увеличению разнообразия жизненных форм. В ходе эволюции земные организмы приобҏели способность использовать для своих нужд энергию различных частей солнечного спектра. Хорошо известна роль видимой части солнечного света – фотосинтез, зрение, инфракрасной – тепло. Оказалось, что используются и ультрафиолетовые компоненты солнечного диапазона и, в частности, при фотохимическом синтезе витамина Д, важнейшего регулятора обмена кальция и фосфора в организме.
Спектр лучей, видимых глазом человека, не имеет резкой, четко определенной границы. Верхней границей видимого спектра одни исследователи называют 400 нм, другие 380, третьи сдвигают ее до 350 – 320 нм. Это объясняется различной световой чувствительностью зрения и указывает на наличие лучей не видимых глазом. В 1801 г. И. Риттер (Германия) и У. Уола-стон (Англия) используя фотопластинку доказали наличие ультрафиолетовых лучей. За фиолетовой границей спектра она чернеет быстрее, чем под влиянием видимых лучей. Поскольку почернение пластинки происходит в результате фотохимической реакции, ученые пришли к выводу, что ультрафиолетовые лучи весьма активны. Ультрафиолетовые лучи охватывают широкий диапазон излучений (таблица 1): 400 – 20 нм. Область излучения 180 – 127 нм называется вакуумной. Посредством искусственных источников (ртутно-кварцевых, водородных и дуговых ламп), дающих как линейчатый, так и непрерывный спектр, получают ультрафиолетовые лучи с длиной волны до 180 нм. В 1914 г. Лайман исследовал диапазон до 50 нм.
Исследователи обнаружили тот факт, что спектр ультрафиолетовых лучей Солнца, достигающих земной поверхности, довольно таки узок 400 – 290 нм. А. Корню (Франция) установил, что озон поглощает ультрафиолетовые лучи короче 295 нм, после чего выдвинул предположение о том, что Солнце излучает коротковолновые ультрафиолетовое излучение. Отсюда следует, что под его действием молекулы кислорода распадаются на отдельные атомы, образуя молекулы озона, а в верхних слоях атмосферы озон покрывает Землю защитным экраном. Гипотеза Корню получила подтверждение тогда, когда люди поднялись в верхние слои атмосферы. Таким образом, в земных условиях спектр солнца ограничен пропусканием озонового слоя.
Количество ультрафиолетовых лучей, достигающих земной поверхности, зависит от высоты Солнца над горизонтом. В течение периода нормального освещения освещенность изменяется на 20%, тогда как количество ультрафиолетовых лучей достигающих земной поверхности уменьшается в 20 раз.
Специальными экспериментами установлено, что при подъеме вверх на каждые 100 м интенсивность ультрафиолетового излучения возрастает на 3 – 4%. На долю рассеянного ультрафиолета в летний полдень приходится 45 – 70% излучения, а достигающего земной поверхности - 30...55%. В пасмурные дни, когда диск Солнца закрыт тучами, поверхности Земли достигает главным образом рассеянная радиация. В связи с данным обстоятельством можно хорошо загореть не только под прямыми лучами солнца, но и в тени, и в пасмурные дни. Когда Солнце стоит в зените, в экваториальной области поверхности земли достигают лучи длиной 290 – 289 нм. В средних широтах коротковолновая граница, в летние месяцы, составляет примерно 297 нм. В период эффективного освещения верхняя граница спектра составляет порядка 300 нм. За полярным кругом земной поверхности достигают лучи с длиной волны 350 – 380 нм.
Для нас главным образом представляют интерес УФ-излучение Солнца и искусственных источников данного излучения в диапазоне 400 – 180 нм. Внутри этого диапазона выделены три области: в действии каждого из этих диапазонов на живой организм есть существенные различия. Ультрафиолетовые лучи действуют на вещество, в том числе и живое, по тем же законам, что и видимый свет. Часть поглощаемой энергии превращается в тепло, но тепловое действие ультрафиолетовых лучей не оказывает на организм заметного влияния.
Другой способ передачи энергии - люминесценция. Фотохимические реакции под действием ультрафиолетовых лучей проходят максимально интенсивно. Энергия фотонов ультрафиолетового света довольно таки велика, а при их поглощении молекула ионизируется и распадается на части. Периодически фотон выбивает электрон за пределы атома. Чаще всего происходит возбуждение атомов и молекул. При поглощении одного кванта света с длиной волны 254 нм энергия молекулы возрастает до уровня, соответствующего энергии теплового движения при температуре 38000 °С. Основная часть солнечной энергии достигает земли в качестве видимого света и инфракрасного излучения и лишь незначительная часть - в виде ультрафиолета. Максимальных значений поток УФ-излучения достигает в середине лета на Южном полушарии (Земля на 5% ближе к Солнцу) и 50% от суточного количества УФ-излучения поступает в течение 4-х полуденных часов. Diffey установил, что для географических широт с температурой 20-60° человек, загорающий с 10:30 до 11:30 и затем с 16:30 до заката, получит только 19% от суточной дозы УФ-излучения. В полдень, интенсивность УФ (300 нм) в 10 раз выше, чем тремя часами раньше или позже: незагорелому человеку достаточно 25 минут для получения легкого загара в полдень, однако для достижения этого же эффекта после 15:00, ему понадобится лежать на солнце не менее 2-х часов. Ультрафиолетовый спектр в свою очередь разделяют на три ультрафиолета: UVA (Ультрафиолет А, длинноволновой диапазон, Чёрный свет) с длиной волны 315 – 400 нм, UVB (Ультрафиолет B, средний диапазон) с длиной волны 280 – 315 нм и UVС (Ультрафиолет С, коротковолновой, гермицидный диапазон) с длиной волны 100 – 280 нм, которые отличаются по проникающей способности и биологическому воздействию на организм.
UVA не задерживается озоновым слоем, проходит сквозь стекло и роговой слой кожи. Поток UVA (среднее значение в полдень) в 2 раза выше на уровне Полярного Круга, чем на экваторе, так что абсолютное его значение больше в высоких широтах. Не отмечается и существенных колебаний в интенсивности UVA в разные времена года. За счет поглощения, отражения и рассеивания при прохождении через эпидермис, в дерму проникает только 20 – 30% UVA и около 1% от общей его энергии достигает подкожной клетчатки.
Большая часть UVB поглощается озоновым слоем, который "прозрачен" для UVA. Отсюда доля UVB во всей энергии ультрафиолетового излучения в летний полдень составляет всего около 3 %. Он практически не проникает сквозь стекло, на 70% отражается роговым слоем, на 20% ослабляется при прохождении через эпидермис – в дерму проникает менее 10%.Однако длительное время считалось, что доля UVВ в повреждающем действии ультрафиолета составляет 80%, поскольку именно этот спектр отвечает за возникновение эритемы солнечного ожога.
Необходимо учитывать и тот факт, что UVВ сильнее (меньшая длина волны) чем UVА рассеивается при прохождении через атмосферу, что приводит и к изменению соотношения между этими фракциями с увеличением географической широты (в северных странах) и временем суток. UVC поглощается озоновым слоем. В случае использования искусственного источника ультрафиолета, он задерживается эпидермисом и не проникает в дерму.
В действии коротковолнового излучения на живой организм наибольший интерес представляет влияние УФ-лучей на биополимеры – белки и нуклеиновые кислоты. Молекулы биополимеров содержат кольцевые группы молекул, содержащие углерод и азот, которые интенсивно поглощают излучение с длиной волны 260 – 280 нм. Поглощенная энергия может мигрировать по цепи атомов в пределах молекулы без существенной потери, пока не достигнет слабых связей между атомами и не разрушит связь. В течение такого процесса, называемого фотолизом, образуются осколки молекул, оказывающие сильное действие на организм. Так, например, из аминокислоты гистидина образуется гистамин (вещество - расширяющее кровеносные капилляры и увеличивающее их проницаемость). Кроме фотолиза под действием УФ-лучей в биополимерах происходит денатурация. При облучении светом определенной длины волны электрический заряд молекул уменьшается, они слипаются и теряют свою активность - ферментную, гормональную, антипенную и пр.
Процессы фотолиза и денатурации белков идут параллельно и независимо друг от друга. Они вызываются разными диапазонами излучения: лучи 280 – 302 нм вызывают главным образом фотолиз, а 250 – 265 нм - преимущественно денатурацию. Сочетание этих процессов определяет картину действия на клетку ультрафиолетовых лучей.
Самая чувствительная к действию ультрафиолетовых лучей функция клетки – деление. Облучение в дозе 10-19 дж/м2 вызывает остановку деления около 90% бактериальных клеток. Но рост и жизнедеятельность клеток при этом не прекращается. Со временем восстанавливается их деление. Чтобы вызвать гибель 90% клеток, подавление синтеза нуклеиновых кислот и белков, образование мутаций, необходимо довести дозу облучения до 10-18 дж/м2. Ультрафиолетовые лучи вызывают в нуклеиновых кислотах изменения, которые влияют на рост, деление, наследственность клеток, т.е. на основные проявления жизнедеятельности.
Значение механизма действия на нуклеиновую кислоту объясняется тем, что каждая молекула ДНК (дезоксирибонуклеиновой кислоты) уникальна. ДНК – это наследственная память клетки. В ее структуре зашифрована информация о строении и свойствах всех клеточных белков. Если любой белок присутствует в живой клетке в виде десятков и сотен одинаковых молекул, то ДНК хранит информацию об устройстве клетки в целом, о характере и направлении процессов обмена веществ в ней. В связи с данным обстоятельством нарушения в структуре ДНК могут оказаться непоправимыми или привести к серьезному нарушению жизнедеятельности.
Воздействие ультрафиолета на кожу заметно влияет на метаболизм нашего организма. Общеизвестно, что именно УФ-лучи инициируют процесс образования витамина Д, необходимого для всасывания кальция в кишечнике и обеспечения нормального развития костного скелета. Кроме того, ультрафиолет активно влияет на синтез мелатонина и серотонина - гормонов, отвечающих за циркадный (суточный) биологический ритм. Исследования немецких ученых показали, что при облучении УФ-лучами сыворотки крови в ней на 7 % увеличивалось содержание серотонина - "гормона бодрости", участвующего в регуляции эмоционального состояния. Его дефицит может приводить к депрессии, колебаниям настроения, сезонным функциональным расстройствам. При этом количество мелатонина, обладающего тормозящим действием на эндокринную и центральную нервную системы, снижалось на 28%. Именно таким двойным эффектом объясняется бодрящее действие весеннего солнца, поднимающего настроение и жизненный тонус.
Действие излучения на эпидермис – наружный поверхностный слой кожи позвоночных животных и человека, состоящий из многослойного плоского эпителия человека, отображает воспалительную реакцию называемую эритемой. Первое научное описание эритемы дал в 1889 г. А.Н. Макланов, который изучил также действие ультрафиолетовых лучей на глаз (фотоофтальмию) и установил, что в основе их лежат общие причины. Различают калорическую и ультрафиолетовую эритему. Калорическая эритема обусловлена воздействием видимых и инфракрасных лучей на кожу и прилива к ней крови. Она исчезает почти сразу после прекращения действия облучения.
Если падающие на кожу лучи поглощаются мертвыми клетками рогового слоя, они не оказывают на организм никакого влияния. Эффект облучения зависит от проникающей способности лучей и от толщины рогового слоя. Чем короче длина волны излучения, тем меньше их проникающая способность. Лучи короче 310 нм не проникают глубже эпидермиса. Лучи с большей длиной волны достигают сосочкового слоя дермы, в котором проходят кровеносные сосуды. Таким образом, взаимодействие ультрафиолетовых лучей с веществом происходит исключительно в коже, главным образом в эпидермисе. Основное количество ультрафиолетовых лучей поглощается в ростковом (основном) слое эпидермиса. Процессы фотолиза и денатурации приводят к гибели шиловидных клеток зародышевого слоя. Активные продукты фотолиза белков вызывают расширение сосудов, отек кожи, выход лейкоцитов и другие типичные признаки эритемы.