Система иммунной защиты организма человека

Автор работы: Пользователь скрыл имя, 25 Марта 2015 в 20:10, реферат

Краткое описание

Актуальность темы заключается в том, что иммунная система является системой органов, существующая у позвоночных животных и объединяющая органы и ткани, которые защищают организм от заболеваний, идентифицируя и уничтожая опухолевые клетки и патогены. Конечной целью иммунной системы является уничтожение чужеродного агента, которым может оказаться болезнетворный микроорганизм, инородное тело, ядовитое вещество или переродившаяся клетка самого организма. Этим достигается биологическая индивидуальность организма.

Содержание

ВВЕДЕНИЕ 3
1. СИСТЕМА ИММУННОЙ ЗАЩИТЫ ОРГАНИЗМА ЧЕЛОВЕКА 4
2. ИОНИЗИРУЮЩИЕ И НЕИОНИЗИРУЮЩИЕ ИЗЛУЧЕНИЯ 8
ЗАКЛЮЧЕНИЕ 11
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 12

Вложенные файлы: 1 файл

Referat_BZhD_2.docx

— 43.94 Кб (Скачать файл)

Даже кратковременное воздействие мощного потока ультрафиолетового излучения может привести к фотохимическому повреждению сетчатки. Оно может выразиться во временном или постоянном снижении зрения.

Долговременное воздействие ультрафиолетового излучения (в течение десятилетий) может внести свой вклад в возникновение катаракты. 
Поэтому при проведении сварки обязательна защита глаз и кожи средствами индивидуальной защиты.

Инфракрасное излучение, часто называемое тепловым излучением или лучистым теплом, испускается всеми телами. Оно становится существенным при высокой температуре поверхности тела (горячие двигатели, расплавленный металл и другие источники, связанные с литейным производством, термически обработанные поверхности, электрические лампы накаливания, системы выработки лучистого тепла и т.д.).

Инфракрасное (ИК) излучение имеет длину волны, варьирующуюся от 780 нм до 1мм. Поскольку инфракрасное излучение не проникает глубоко в ткани организма, то основными «мишенями» воздействия инфракрасного излучения становятся кожа и глаза.

Естественная защитная реакция глаз, прекращающая рассматривание источников яркого света в 0,25 секунды, не срабатывает для инфракрасного излучения, не обладающего соответствующим зрительным раздражителем. Поэтому глаз не чувствует нагрева, что приводит к его неблагоприятному воздействию, особенно на хрусталик глаза и сетчатку.

При интенсивном инфракрасном излучении, связанном, как правило, с использованием лазеров или с очень сильными источниками излучения (ксеноновая дуга), могут возникнуть термические повреждения глаз. При этом в слепом пятне сетчатки возникает местный ожог (скотома). 
При длительном воздействии инфракрасного излучения с длинами волн приблизительно 800-3000 нм возможно помутнение хрусталика (катаракта).

Для предотвращения возникновения этих повреждений должны применяться средства индивидуальной защиты для глаз.

Для защиты от теплового действия инфракрасного излучения применяют экранирование и специальную одежду.

В пределе нулевой частоты электромагнитное поле расщепляется на статические электрическое и магнитное поля. В настоящее время их возможное (при определенных условиях) вредное влияние на организм человека не установлено. Однако накапливающиеся электрические заряды (статическое электричество) при разряде могут вызвать взрыв и/или пожар, нарушить технологию, они неприятны для человека. Для защиты от действия статического электричества, кроме средств коллективной защиты, применяются специальные «антистатические» средства индивидуальной защиты типа слаботокопроводящей одежды и обуви, не позволяющих скапливаться зарядам большой мощности.

Ионизирующее излучение – поток заряженных или нейтральных частиц и квантов электромагнитного излучения, прохождение которых через вещество приводит к ионизации и возбуждению атомов или молекул среды. Они возникают в результате естественных или искусственных радиоактивных распадов веществ, ядерных реакций деления в реакторах, ядерных взрывов и некоторых физических процессов в космосе.

Ионизирующие излучения состоят из прямо или косвенно ионизирующих частиц или смеси тех и других. К прямо ионизирующим частицам относятся частицы (электроны, α-частицы, протоны и др.), которые обладают достаточной кинетической энергией, чтобы осуществить ионизацию атомов путём непосредственного столкновения. К косвенно ионизирующим частицам относятся незаряженные частицы (нейтроны, кванты и т.д.), которые вызывают ионизацию через вторичные объекты.

В настоящее время известно около 40 естественных и более 200 искусственных α-активных ядер. α-распад характерен для тяжелых элементов (урана, тория, полония, плутония и др.). α-частицы - это положительно заряженные ядра гелия. Они обладают большой ионизирующей и малой проникающей способностью и двигаются со скоростью 20000 км/с.

 

ЗАКЛЮЧЕНИЕ

 

Все патогенные агенты и вещества антигенной природы нарушают постоянство внутренней среды организма. При уравновешивании этого нарушения организм использует весь комплекс своих механизмов, направленных на поддержание постоянства внутренней среды. Иммунологические механизмы являются частью этого комплекса. Иммунным оказывается тот организм, механизмы которого или вообще не позволяют нарушить постоянство его внутренней среды или позволяют быстро ликвидировать это нарушение. Таким образом, иммунитет является состоянием невосприимчивости, обусловленным совокупностью процессов, направленных на восстановление постоянства внутренней среды организма, нарушенного патогенными агентами и веществами антигенной природы.

Невосприимчивость организма к инфекции может быть обусловлена не только его иммунологической реактивностью, но и другими механизмами. Например, кислотность желудочного сока может предохранить от заражения через рот некоторыми бактериями, и организм с большей кислотностью желудочного сока оказывается более защищённым от них, чем организм с меньшей кислотностью. В тех случаях, когда защита обусловлена не иммунологическим механизмом, говорят о резистентности организма. Не всегда можно провести чёткую грань между иммунитетом и резистентностью. Например, изменения в устойчивости организма к инфекции, наступающие в результате утомления или охлаждения, в большей степени обусловлены изменением физиологических констант организма, чем факторов иммунологической защиты. Эта грань более отчётлива в явлениях приобретённого иммунитета, отличающихся высокой специфичностью, отсутствующей в явлениях резистентности.

 

 

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

 

  1. Жорина Л. Г. Основы взаимодействия физических полей с биообъектами. Учебник / Л. Г. Жорина. – М. : МГТУ им. Н. Э. Баумана, 2013. – 376 с.
  2. Месник Н. Г. Как защитить иммунитет? / Н. Г. Месник. – М. : ЭКСМО, 2013. – 224 с.
  3. Томлинсон М. Сильный иммунитет / М. Томлинсон. – М. : Амфора,  2012. – 48 с.
  4. Черняев А. П. Ионизирующее излучение / А. П. Черняев. – М. : КДУ, 2014. – 314 с.
  5. Чиженкова Р. Г. Динамика нейрофизиологических исследований действия неионизирующей радиации во второй половине ХХ-го века / Р. Г. Чиженкова. – М. : Издательский дом Академии Естествознания, 2012. – 88 с.

 

 

 

 

 

 


Информация о работе Система иммунной защиты организма человека