Автор работы: Пользователь скрыл имя, 17 Октября 2013 в 14:44, реферат
Существуют механизмы, благодаря которым нуклеотидные последовательности ДНК передаются в ряду клеточных поколений почти неизменными. Действительно, генетическая стабильность крайне важна для выживания, когда речь идет о сравнительно коротких сроках, но для длительного существования вида необходима генетическая изменчивость, которая позволяла бы приспосабливаться к изменяющейся среде.
Введение.
1.Виды рекомбинации генов. 1
2.Процессы общей рекомбинации. 3
3.Механизм сайт-специфической рекомбинации. 23
Заключение. 30
Список литературы
Рис. 5. При гибридизации ДНК in vitro двойные спирали ДНК образуются заново из ранее разделившихся цепей. Восстановление спиралей зависит от случайного cоударения двух комплементарных целей. Большинство таких соударений безрезультатно (как это видно из левой части рисунка), но некоторые из них приводят к спариванию на коротком участке комплементарных оснований (т. е. к нуклеации спирали). За этим следует быстрое «застегивание молнии» и двойная спираль готова. Посредством такого процесса - методом проб и ошибок каждая цепь ДНК может найти себе комплементарного партнера среди миллионов «неподходящих» цепей. По-видимому, общая рекомбинация всегда инициируется именно таким путем: комплементарные партнеры узнают друг друга методом проб и ошибок.
В такой конформации одноцепочечная ДНК способна присоединять путем спаривания оснований либо молекулы нуклеозидтрифосфатов (при репликации ДНК), либо комплементарные участки другой одноцепочечной ДНК (при генетической рекомбинации). Если гибридизацию ДНК проводят in vitro в условиях, напоминающих внутриклеточные, то белок SSB ускоряет нуклеацию спирали ДНК, а значит, и весь процесс отжига более чем в 1000 раз.
Белок rесА у Е. соlі дает возможность одиночным цепям ДНК спариваться с гомологичным участком двойной спирали ДНК
Общая генетическая рекомбинация - более сложный процесс, нежели описанная выше простая гибридизация ДНК. При общей рекомбинации в двойную спираль ДНК должна внедриться одиночная цепь ДНК, высвободившаяся из другой двойной спирали (см. рис. 4). У Е.соlі для этого необходим белок rесА. Этот белок представляет собой продукт гена rесА, который, как выяснилось в 1965 г., играет главную роль в конъюгации хромосом. Биохимики долго вели поиски важного, но неуловимого продукта этого гена, и, наконец, в 1976 г. его удалось получить в чистом виде. Он оказался белком с молекулярной массой 38000 дальтон. Подобно дестабилизирующему белку, он прочно связывается в виде крупных кооперативно образованных кластеров с одиночными цепями ДНК, однако есть у recA-белка и некоторые особые свойства. В частности, у него имеются два участка (сайта) для связывания ДНК, благодаря чему он способен удерживать вместе одиночную цепь и двойную спираль. Эти два участка для связывания ДНК позволяют белку rесА катализировать образование синапсиса - между двойной спиралью ДНК и гомологичным участком одноцепочечной ДНК, как это показано на рис. 6. Ключевым этапом в этой реакции является определение области гомологии путем начального спаривания между комплементарными нуклеотидными последовательностями. Это взаимодействие кладет начало процессу спаривания и тем самым инициирует обмен одноцепочечными участками между двумя двойными спиралями ДНК, претерпевающими рекомбинацию.
Рис. 6. Эксперименты in vitro показывают, что между одноцепочечной ДНК, несущей белок recA, и двойной спиралью может образоваться несколько различных комплексов. Сначала (1-й этап) возникает комплекс с неспаренными основаниями. Далее он, как только будет найден участок с гомологичной нуклеотидной последовательностью (2-й этап), превращается в комплекс со спаренными основаниями, в котором, однако, цепи не закручены. Такой комплекс нестабилен, потому что ДНК находится в нем в необычной форме: две ее цепи либо вообще не закручены в спираль, либо закручены так, что в ней чередуются участки правой (т.е. нормальной) и левой спиралей. На 3-м этапе обмен цепями стабилизируется. Для этого в одной из двух цепей, образующих спираль, должен возникнуть разрыв (здесь не показан), а затем одна цепь должна быть закручена в спираль вокруг другой.
В экспериментах in vitro было показано, что дестабилизирующий белок Е. coli (белок SSB) и белок rесА действуют кооперативно, облегчая реакции спаривания. Быть может, именно по этой причине генетическая рекомбинация в клетках Е. coli резко ослабевает, если хоть один из этих белков оказывается дефектным.
После того как образование синапсиса произошло, короткий участок гетеродуплекса, в котором начали спариваться цепи, принадлежащие двум разным молекулам ДНК, увеличивается за счет направляемой белком миграции ветви, которая также катализируется белком rесА.
Миграция ветви может происходить в любой точке там, где две одинаковые по своей последовательности одиночные цепи ДНК пытаются спариться с одной и той же комплементарной цепью; неспаренный участок одной цепи вытесняет спаренный участок другой, смещая, таким образом, точку ветвления, хотя само число спаренных оснований при этом не изменяется. Спонтанно миграция ветви идет с равной вероятностью в обоих направлениях и потому трудно ожидать, чтобы она могла привести к эффективному завершению процесса рекомбинации (рис. 7, А).
Рис. 7. Два типа миграции ветвей, наблюдаемые в экспериментах in vitro. Спонтанно миграция идет в обоих направлениях, подчиняясь закону случая, поэтому реальное перемещение при этом очень невелико. Миграция же с участием белка rесА идет с постоянной скоростью только в одном направлении, энергию для нее, очевидно, поставляет процесс поляризованной сборки белка rесА на одиночной цепи ДНК, идущий в указанном направлении.
В присутствии белка rесА эта миграция приобретает направленный характер, так что гетеродуплексный участок быстро увеличивается, достигая нескольких тысяч спаренных нуклеотидов (рис. 7, Б).
Катализ процесса миграции ветви связан и с другой особенностью белка rесА. Помимо наличия двух ДНК-связывающих сайтов этот белок (подобно белку recBCD) имеет и еще один дополнительный участок - для связывания и гидролиза АТР, т.е. он представляет собой ДНК-зависимую АТРазу. Он связывается с ДНК намного прочнее, когда к нему присоединен не ADP, а АТР. Более того, новые несущие молекулы rесА предпочтительно связываются с одним из концов белковой нити, и АТР гидролизуется при этом до ADP. Можно видеть, таким образом, что нити белка rесА, выстраивающиеся на ДНК, в смысле динамики сборки имеют много общего с нитями тубулина или актина, образующими цитоскелет; об этом свидетельствует, в частности, тот факт, что направленное продвижение белка rесА вдоль цепи ДНК способно служить движущей силой для реакции миграции ветви, как это показано на рис. 7, Б.
Общая генетическая рекомбинация включает обычно обмен с перекрещиванием цепей
Трудным и медленным этапом общей генетической рекомбинации является одноцепочечный обмен между двумя двойными спиралями (см. рис. 4). После этого начального обмена гомологичные нуклеотидные последовательности двух взаимодействующих спиралей устанавливаются в строгом соответствии одна с другой, и потому расширение области спаривания и «закладка» новых обменов между двумя спиралями происходят быстро. Во время этих событий часто наблюдаются удаление некоторого количества нуклеотидов и локальный ресинтез ДНК, сходные с теми, какие имеют место при репарации ДНК. Однако возможных вариантов здесь много, так что разные организмы нередко используют на этой стадии различающиеся в деталях механизмы. Большая часть механизмов включает в качестве промежуточного этапа обмен с перекрещиванием цепей между двумя спиралями ДНК. Один из самых простых путей образования соответствующей структуры показан на рис. 8.
В структуре с перекрещивающимися цепями (ее называют также структурой Холлидея) две гомологичные спирали ДНК после первоначального этапа спаривания удерживаются вместе благодаря перекрестному обмену двумя цепями из имеющихся четырех - по одной цепи от каждой спирали. Для поддержания этой структуры не требуется, чтобы нарушалось спаривание оснований. Структура обладает некоторыми интересными и важными свойствами. 1. Точка обмена между двумя гомологичными спиралями ДНК, расположенная там, где скрещиваются две их цепи (рис.8), может быстро перемещаться по спирали взад и вперед (миграция двух ветвей). 2. Структура, образующаяся при обмене с перекрещиванием цепей, содержит две перекрещенные и две неперекрещенные цепи. Эта структура может существовать в различных изомерных формах, возникающих в результате вращения составляющих ее элементов относительно друг друга, как показано на рис. 9. Изомеризация меняет положение двух пар цепей: две ранее перекрещивавшиеся цепи становятся неперекрещивающимися, и наоборот. Для того чтобы вновь восстановились две отдельные спирали ДНК и тем самым прекратился процесс спаривания, в каждой из двух перекрещенных цепей должен произойти разрыв. Если он произойдет до того, как структура с перекрещенными цепями подвергнется изомеризации, то две исходные спирали ДНК отделятся друг от друга почти неизменными – у каждой из них будет изменена только одна из цепей и только на коротком отрезке (рис.9, вверху). Если же разрыв двух перекрещенных цепей произойдет после изомеризации, то часть каждой исходной спирали ДНК окажется присоединенной (ступенчатым соединением) к части другой спирали; иными словами, между двумя спиралями произойдет кроссинговер (рис. 9, внизу).
Рис. 8. Обмен с перекрещиванием цепей. Много возможных путей ведет от структуры, представленной на рис. 5-58 (одноцепочечный обмен), к структуре с перекрещенными цепями. Здесь показан один из таких путей. Более точное представление о структуре с перекрещенными цепями дает, вероятно, верхнее из - приведенных здесь изображений, однако нижнее позволяет лучше понять реакцию изомеризации, которую иллюстрирует рис. 9.
Рис. 9. Изомеризация структуры с перекрещенными цепями. При отсутствии изомеризации разрыв двух перекрещенных цепей приводит к тому, что обмен завершается без кроссинговера (вверху). В случае изомеризации разрыв перекрещенных цепей дает две кроссоверные хромосомы (внизу). Полагают поэтому, что изомеризация требуется для разрыва и воссоединения двух гомологичных двойных спиралей ДНК при общей генетической рекомбинации.
Рис. 10. Общая генетическая рекомбинация между двумя гомологичными хромосомами, приводящая к кроссинговеру. Изомеризация структуры с перекрещенными цепями происходит так, как это представлено на рис. 9.
Изомеризация, как предполагают,
необходима для того, чтобы между
двумя хромосомами мог
Общая генетическая рекомбинация в сочетании с ограниченным синтезом ДНК ведет к конверсии генов.
Один из фундаментальных законов генетики гласит, что оба родителя вносят равный вклад в генетическую конституцию потомства, поскольку один полный набор генов потомок получает от матери, а другой - от отца. Таким образом, когда из одной диплоидной клетки путем мейоза образуются четыре гаплоидные клетки, в каждой из этих клеток ровно половину всех генов должны составлять материнские гены, а другую половину - отцовские. Проверить справедливость этого утверждения для сложного организма, в частности организма человека, разумеется, невозможно. К счастью, существуют и такие организмы, например грибы, у которых можно выделить и подвергнуть анализу все четыре дочерние клетки, образовавшиеся в результате мейоза из одной-единственной клетки. Подобный анализ показал, что из строгих генетических правил есть исключения. Иногда мейоз дает три копии материнского варианта (аллеля) данного гена и лишь одну копию отцовского аллеля, что свидетельствует о превращении одной из двух копий отцовского аллеля в копию материнского аллеля. Этот феномен получил название конверсии генов. Часто конверсия генов бывает связана с общей генетической рекомбинацией, и возможно, это явление играет немаловажную роль в эволюции некоторых генов. Полагают, что конверсия генов представляет собой прямое следствие действия двух механизмов - общей генетической рекомбинации и репарации ДНК.
При мейозе в точках кроссинговера
между гомологичными
Рис. 11. Гипотетический механизм общей рекомбинации, приводящий к конверсии генов. На 1-м этапе ДНК-полимераза начинает синтез дополнительной копии одной из цепей красной спирали, вытесняя прежнюю копию из спирали в виде одиночной цепи. Эта одиночная цепь спаривается с гомологичным участком черной спирали способом, который иллюстрирует рис. 6. На 2-м этапе короткий неспаренный участок черной цепи подвергается разрушению, чем и завершается перенос нуклеотидной последовательности из одной спирали в другую. Общий результат произошедших изменений выявляется обычно в следующем клеточном цикле, после того как репликация ДНК приведет к разделению двух «неподходящих» цепей (3-й этап).
Существуют и некоторые другие механизмы, способные осуществлять конверсию генов, но во всех случаях для этого требуется некое событие, имеющее отношение к общей генетической рекомбинации, которое сведет вместе две копии ДНК с очень близкой нуклеотидной последовательностью. Поскольку при этом образуется лишняя копия одной из двух последовательностей, должен иметь место также и синтез некоторого количества ДНК. Генетический анализ показывает, что конверсия генов происходит обычно лишь на небольшом отрезке ДНК, а во многих случаях изменяется вообще только часть одного какого-нибудь гена.
При митозе также может происходить конверсия генов, хотя и несколько реже. Вероятно, как и в процессе мейоза, она возникает здесь вследствие репарации гетеродуплексов ДНК, содержащих неправильные пары. Рис. 11 иллюстрирует еще один гипотетический механизм конверсии генов, пригодный и для мейоза, и для митоза.
3. МЕХАНИЗМ САЙТ-СПЕЦИФИЧЕСКОЙ РЕКОМБИНАЦИИ
Ферменты сайт-специфической рекомбинации вводят в геном особые нуклеотидные последовательности ДНК и выводят их из геномов.
Сайт-специфическая рекомбинация отличается от общей тем, что в этом случае особый рекомбинационный фермент узнает специфические нуклеотидные последовательности в одной или в двух рекомбинирующих молекулах ДНК. Спаривания оснований здесь не требуется (даже в тех системах, где оно все-таки происходит, в образовании гетеродуплекса участвует не более нескольких пар оснований). Эта форма рекомбинации дает возможность различным типам мобильных последовательностей ДНК перемещаться в пределах хромосом или переходить из одной хромосомы в другую.