Автор работы: Пользователь скрыл имя, 31 Марта 2014 в 20:16, курсовая работа
Целью данной работы является изучение влияния минерального питания на физиологическое состояние растений.
Задачи:
1. Охарактеризовать способы питания растений;
2. Изучить макроэлементы необходимые для жизнедеятельности растения.
3.Изучить физиологическое и биологическое значение макроэлементов для растения.
4.Изучить азотфиксаторы и их влияние на организм.
5.Изучить Механизм поступления ионов в клетку.
Особенности поступления солей в корневую систему
Растительный организм обладает способностью к избирательному накоплению питательных элементов.
Влияние внешних условий на поступление солей
При температуре, близкой к 0°С, поглощение солей идет медленно, затем, в пределах до 40°С, оно усиливается. Увеличение температуры на 10°С может вызвать возрастание поглощения в два и даже в три раза. В темноте поглощение солей замедляется и постепенно прекращается, а под влиянием освещения ускоряется. Быстрота реакции указывает на прямое действие света. Вместе с тем свет может оказывать и косвенное влияние. На свету в процессе фотосинтеза образуются углеводы, которые необходимы для дыхания, образуется АТФ, энергия которой используется на поступление веществ. При уменьшении содержания кислорода до 2—3% интенсивность поступления солей остается на одном уровне. Лишь снижение концентрации кислорода ниже 3% вызывает падение поглощения примерно в два раза.
Как уже упоминалось, поглощение одного иона зависит от присутствия других ионов. Так, в присутствии легко поглощаемого аниона катионы той же соли поступают быстрее. Ионы с одинаковым зарядом обычно конкурируют между собой.
Влияние внутренних факторов на поступление солей
Зависимость поступления солей от интенсивности дыхания является установленным фактом. Ингибиторы процесса дыхания (в частности, цианистый калий) резко тормозят поступление солей. Процесс дыхания может оказывать влияние на поступление солей в нескольких направлениях. Так, в процессе дыхания выделяющийся углекислый газ в водной среде диссоциирует на ионы Н+ и НС03-. Адсорбируясь на поверхности корня, эти ионы служат обменным фондом для поступающих катионов и анионов. В процессе переноса ионов через мембрану участвуют специфические белки-переносчики, синтез которых находится в зависимости от интенсивности дыхательного процесса. Наконец, энергия, выделяемая в процессе дыхания, непосредственно используется для поступления солей (активное поступление). В этой связи особенно важно, что вещества, нарушающие накопление энергии дыхания в макроэргических фосфорных связях (динитрофенол), также тормозят поступление солей. Поступление воды и солей во многих случаях идет независимо друг от друга. Сопоставление количества воды, испаренной в процессе транспирации, и количества поступивших солей показывает, что прямой зависимости между этими процессами обычно нет.
Механизм и пути поступления минеральных солей через корневую систему
Поступление питательных солей в корневую систему носит частично активный характер, связанный с метаболизмом. Об этом свидетельствуют следующие особенности поступления: способность растений к избирательному концентрированию веществ; относительная независимость поступления воды и солей; зависимость от дыхания и фотосинтеза; ускорение процесса под влиянием температуры и света.
В корневой системе различают два объема — апопласт и симпласт. Тот факт, что оба эти объема участвуют в поглощении солей, был доказан в опытах с меченой серой (Э. Эпстайн). Отрезанные корневые системы ячменя погружали в раствор, содержащий сульфат (S042-), меченный по сере (35S). В одной пробе корней было определено количество серы, поглощенной в течение одного часа. Другую пробу после часового пребывания в растворе помещали в раствор CaS04, не содержащий меченой серы. Сначала 35S быстро обменивалась и выходила в окружающий раствор, затем обмен прекращался. В дальнейшем 35S в раствор больше не выходила. Та часть серы, которая быстро обменивалась, была легкодиффундирующая, поступившая пассивным путем. Оставшаяся часть 35S в растении, очевидно, проникла внутрь клетки через мембрану. Таким образом, эти исследования подтвердили наличие свободного пространства корня (апопласта), т.е. той части тканей, в которую вещества вместе с водой могут поступать путем свободной диффузии. Объем свободного пространства составляет 5—10% от всего объема корневой системы.
Корни поглощают вещества из почвенного раствора (водная фаза) и при контакте с частицами ППК — почвенного поглощающего комплекса (твердая фаза почвы). ППК — это мелкодисперсная коллоидная часть почвы, смесь минеральных (алюмосиликатных) и органических (гуминовых) соединений. Большая часть коллоидов почвы заряжена отрицательно, на их поверхности в адсорбированном (поглощенном) состоянии находятся катионы. Некоторая часть коллоидов почвы в определенных условиях может быть заряжена положительно, поэтому на них в поглощенном адсорбированном состоянии будут находиться анионы. Обменные катионы и анионы — один из важнейших источников питания для растений. Катионы и анионы, находящиеся в поглощенном состоянии на частицах почвенного поглощающего комплекса, могут обмениваться на ионы, адсорбированные на поверхности клеток корня. Так может осуществляться поступление катионов К+, Са2+, Na+ в обмен на протоны, а также анионов N03-, Р043- и других в обмен на НС03- или анионы органических кислот. Особенно эффективно идет поглощение при контактном обмене, при котором происходит обмен ионами без перехода их в раствор. Поглощенные ионы адсорбируются на поверхности клеточных оболочек ризодермы. Из адсорбированного состояния ионы могут по коре корня передвигаться двумя путями: по апопласту и симпласту. При поступлении в симпласт ионы проникают через мембрану и далее передвигаются по плазмодесмам к сосудам ксилемы.
Ток воды с растворенными веществами, движущийся по свободному пространству (апопласту), как бы омывает все клетки коры. На всем этом пути могут наблюдаться адсорбция веществ клеточными стенками, поступление ионов в клетки через соответствующие мембраны и включение их в обмен веществ, т. е. метаболизация. Необходимо учесть, что на пути движения по апопласту имеется преграда в виде клеток эндодермы с поясками Каспари. Передвижение через клетки эндодермы возможно, по-видимому, только через цитоплазму. Даже если признать наличие в стенках клеток эндодермы промежутков для свободной диффузии, то они настолько малы, что вещества не могут через них проникнуть. В связи с этим перенос ионов через мембраны клеток эндодермы необходим и также осуществляется с помощью переносчиков. В целом между апопластом и симпластом в корневой системе происходит непрерывное взаимодействие и обмен питательными солями. По мнению некоторых исследователей, основным для транспорта ионов является симпластный путь, отличающийся от апопластного большей эффективностью и возможностью осуществлять метаболическую регуляцию.
Роль корней в жизнедеятельности растений
В корне запасаются питательные вещества, в том числе и минеральные. Таким образом, корень является органом, регулирующим скорость поступления веществ в надземные органы. Это хорошо проявляется в опытах по выращиванию растений в водных культурах на среде, содержащей все питательные элементы. Оказалось, что в пасоке, вытекающей из среза отделенных корней, выделяется меньше фосфора по сравнению с тем количеством, которое поступает в корневую систему. При переносе растений из полной питательной среды на дистиллированную воду в пасоке в течение длительного времени продолжают обнаруживаться соединения фосфора. Иначе говоря, в восходящем токе по сосудам ксилемы передвигаются не только питательные соли, поступившие непосредственно из почвы, но и предварительно аккумулированные в клетках корня. Известно, что к концу онтогенеза, по мере старения клеток корня, их поглотительная способность резко падает. В этот же период в почве уменьшается количество доступных питательных веществ. Тем не менее, клетки корня продолжают снабжать надземные органы питательными веществами. В клетках корня происходят очень активные обменные процессы. Так, вне зависимости от того, какие соединения азота находились в питательной среде и поступали в клетки (аммиак или нитраты), в пасоке были обнаружены аминокислоты и амиды. Имеются данные, что 50—70% поступившего азота включается в метаболизм в корнях. Уже через несколько секунд после поступления неорганическая фосфорная кислота оказывается в составе АТФ. Правда, при переходе из клеток корня в полость сосудов фосфорная кислота обычно вновь отщепляется. Есть вещества, которые синтезируются только в клетках корня, как алкалоиды, происходит в клетках корня. В корнях синтезируются и другие вещества, например, порфирины, каучук, витамины (В1, В6, никотиновая кислота, аскорбиновая кислота). Немецкий ученый К. Мотес (1958) установил, что если изолированные листья табака поместить в питательную среду и на них образуются корни, то они долгое время сохраняют зеленую окраску. Если корни обрывать, то при выдерживании на питательной смеси листья желтеют. При этом влияние корней оказалось возможным заменить нанесением на листья раствора фитогормона типа цитокининов, а именно кинетина. Показано (Е. Овсянникова), что фотосинтетическая деятельность листьев зависит от гормональных веществ, поступающих через корневую систему. В настоящее время не вызывает сомнения, что корневая система — место синтеза важнейшей группы фитогормонов — цитокининов. Таким образом, живые клетки корня являются источником многих важных и незаменимых органических веществ, в том числе гормонов.
Экология минерального питания, влияние внешних и внутренних факторов. Физиологические основы применения удобрений.
Физиологические основы применения удобрений
Рациональное внесение питательных веществ в виде удобрений — мощный фактор повышения урожайности растений. Особое значение это приобретает при развитии интенсивных технологий возделывания сельскохозяйственных культур. Однако необходимо учитывать, что завышенные дозы удобрений представляют не только бесполезную их трату, но могут привести к ряду весьма вредных последствий. Прежде всего, это может создать повышенную концентрацию почвенного раствора. Большинство культурных растений чувствительны к этому показателю. Повышение содержания какой-либо питательной соли может оказать непосредственное токсическое действие на растительный организм. Наконец, повышенное содержание солей в растении может ухудшать качество сельскохозяйственной продукции. Для установления обоснованных норм удобрений необходимо учитывать наличие питательных веществ в почве, потребности данного растения и свойства вносимых удобрений.
Растения резко различаются по содержанию, а, следовательно, и по потребности в питательных веществах, по темпам их поступления, по усвояющей способности корневых систем. Растения с растянутым ходом поступления питательных веществ (в течение всего вегетационного периода), как правило, менее требовательны к удобрениям по сравнению с растениями со сжатым периодом поступления. Так, например, растения льна поглощают все необходимые вещества в течение 15 суток. Естественно, именно в этот период лен особенно требователен к содержанию питательных веществ в почве. Необходимо помнить, что с помощью удобрений можно регулировать не только массу урожая, но и его качество. Так, для получения зерна пшеницы с высоким содержанием белка необходимо прежде всего внесение азотных удобрений, тогда как для получения продуктов с высоким содержанием крахмала (например, зерна пивоваренного ячменя или клубней картофеля) прежде всего надо улучшить питание фосфором и калием.
Важное значение имеет состав корневых выделений. Растения с кислыми корневыми выделениями (такие, как люпин, гречиха, горчица) могут усваивать фосфор из нерастворимой соли Са3(Р03)2. Важное значение в этом отношении имеет и повышенная потребность указанных растений в кальции. Обменивая Са2+ на Н+ эти культуры обладают способностью переводить фосфат в растворимую форму. В этом случае можно применять в качестве удобрения фосфоритную муку. Применение фосфоритной муки возможно также на кислых почвах или в сочетании с физиологически кислыми удобрениями. Известно, что многие питательные соли вносятся с дополнительным ионом, например КСl содержит не только К+, но и Сl-. Между тем Сl-, хотя и необходим в небольших количествах, однако тормозит синтез крахмала и тем самым ухудшает качество картофеля. Как уже упоминалось, избыточное накопление нитратов в растениях может быть вредно для человека. Важное значение имеет правильное установление сроков и способов внесения удобрений. Так, с физиологической точки зрения оправдано внесение гранулированных удобрений, создающих местные очаги с повышенной концентрацией питательных веществ. Это, с одной стороны, уменьшает соприкосновение питательных солей с почвой, а с другой — повышает их усвоение растением в результате способности корней расти по направлению питательных веществ (хемотропические изгибы). С физиологической точки зрения весьма существенное значение имеет внесение питательных веществ на протяжении вегетационного периода (подкормки). Это позволяет регулировать соотношение питательных веществ в зависимости от фазы развития растения и условий среды. Известно, что в осенний период для озимых культур не рекомендуется вносить азотные удобрения, так как они усиливают ростовые процессы, снижая устойчивость растений.
В осенний период должно быть усилено фосфорное питание. Вместе с тем весной очень благоприятное влияние оказывает подкормка азотом. В ряде случаев полезны внекорневые подкормки, основанные на способности клеток листьев поглощать минеральные соли. В этом случае можно воздействовать непосредственно на процессы, протекающие в листе. Как показывает практика, с помощью внекорневых фосфорных подкормок, проведенных незадолго до уборки, оказалось возможным усилить отток ассимилятов из листьев сахарной свеклы к корнеплодам и тем самым увеличить ее сахаристость (И.В. Якушкин, М.М. Эделыптейн). Ведущими в определении рационального питания растений были и остаются вегетационные и особенно полевые опыты. Именно эти опыты позволяют учесть все составляющие комплекса: почва — растение — удобрения. Поскольку на большинстве почв растения в первую очередь нуждаются в трех элементах питания — азоте, фосфоре, калии, то в простейшем случае опыт может быть заложен по схеме, включающей 5 вариантов: 1) контроль без удобрений; 2) N (внесение азотных удобрений); 3) Р (внесение фосфорных удобрений); 4) К (внесение калийных удобрений); 5) NPK (сочетание всех трех видов удобрения). Полевые опыты обязательно должны проводиться в определенной повторности результаты подвергаться статистической обработке. Наряду с решением агрономических задач такие опыты могут иметь обучающий характер, и их следует применять как на агробиостанциях вузов, так и на пришкольных участках. В настоящее время широко применяется метод программирования урожая. Это требует расчета норм удобрений, исходя из заданного урожая. При этом должно учитываться: 1) вынос питательных веществ данной культурой; 2) использование питательных веществ почвы данным растением; 3) нормы удобрений. Важно подчеркнуть при этом, что при планировании урожая той или иной культуры должны быть учтены возможности снабжения водой (транспирационные коэффициенты), а также уровень фотосинтетической деятельности листового аппарата. Наивысшая эффективность удобрений может быть достигнута при оптимальном течении фотосинтеза и достаточном снабжении водой.
Почвенный покров накапливает информацию о происходящих процессах и изменениях, т. е. почва является своеобразным индикатором не только сиюминутного состояния среды, но и отражает прошлые процессы. Поэтому почвенный (агроэкологический) мониторинг имеет более общий характер и открывает большие возможности для решения прогностических задач. Основными показателями, которые оцениваются в процессе агроэкологического мониторинга, являются следующие: кислотность, потеря гумуса, засоление, загрязнение нефтепродуктами. Кислотность почв оценивается по значению водородного показателя (рН) в водных вытяжках почвы. Значение рН измеряют с помощью рН-метра, иономера или потенциометра. Оптимальные диапазоны рН для растений от 5,0 до 7,5. Если кислотность, — т. е. рН меньше 5, то прибегают к известкованию почв, при рН более 7,5-8 используют химические средства для снижения рН.В настоящее время контроль за содержанием гумуса входит в число первоочередных задач. Изменение количества органического вещества в почве не только связано с изменением почвенных свойств и их плодородия, но и отражает влияние внешних негативных процессов, вызывающих деградацию почв.