Митоз и мейоз. Биологическое значение

Автор работы: Пользователь скрыл имя, 24 Июня 2014 в 16:11, реферат

Краткое описание

Основной способ деления клеток эукариот (непрямое деление). У всех живых организмов увеличение числа клеток происходит только в результате деления уже существующих клеток. Происходит это только после удвоения всего генетического материала клетки в синтетическом периоде интерфазы. Деление всех эукариотических клеток сопровождается конденсацией, т. е. резким уплотнением хроматина хромосом. Плотные компактные хромосомы распределяются между двумя дочерними клетками специальным аппаратом - веретеном деления, построенным из микротрубочек. Такой тип деления клеток называется митозом (микротрубочки внешне напоминают нити, откуда и название). При этом происходят два события: расхождение предварительно удвоенных хромосом и разделение тела клетки надвое, цитотомия.

Вложенные файлы: 1 файл

Паша. Биология.docx

— 269.39 Кб (Скачать файл)
  1. Митоз. Определение.

Митоз (от греч. mнtos — нить), кариокинез, непрямое деление клетки, наиболее распространённый способ воспроизведения (репродукции) клеток, обеспечивающий тождественное распределение генетического материала между дочерними клетками и преемственность хромосом в ряду клеточных поколений.

Основной способ деления клеток эукариот (непрямое деление). У всех живых организмов увеличение числа клеток происходит только в результате деления уже существующих клеток. Происходит это только после удвоения всего генетического материала клетки в синтетическом периоде интерфазы. Деление всех эукариотических клеток сопровождается конденсацией, т. е. резким уплотнением хроматина хромосом. Плотные компактные хромосомы распределяются между двумя дочерними клетками специальным аппаратом - веретеном деления, построенным из микротрубочек. Такой тип деления клеток называется митозом (микротрубочки внешне напоминают нити, откуда и название). При этом происходят два события: расхождение предварительно удвоенных хромосом и разделение тела клетки надвое, цитотомия.  

 

 

 

 

 

 

 

 

 

 

 

  1. Типы митоза

Выработка единой типологии и классификации митозов осложняется целым спектром признаков, которые в различных комбинациях создают разнообразие и неоднородность картин митотического деления. При этом отдельные варианты классификации, разработанные применительно к одним таксонам, являются неприемлемыми в отношении других, поскольку не учитывают специфики их митозов. Например, отдельные варианты классификации митозов, свойственных животным или растительным организмам, оказываются неприемлемыми для водорослей.

Одним из ключевых признаков, лежащих в основе различных типологий и классификаций митотического деления, является поведение ядерной оболочки. Если образование веретена и само митотическое деление протекает внутри ядра без разрушения ядерной оболочки, то такой тип митоза называют закрытым. Митоз с распадом ядерной оболочки, соответственно, называется открытым, а митоз с распадом оболочки только на полюсах веретена, с образованием «полярных окон» - полузакрытым.

 

  1. Ход (фазы) митоза
  2. Интерфаза - клетка подготавливается к делению, сначала клетка растет, ее хромосомы удваиваются, и готовится к делению.
    1. Профаза
  • хроматин спирализуется (скручивается, конденсируется) до состояния хромосом;

  • ядрышки исчезают;

  • ядерная оболочка распадается;

  • центриоли расходятся к полюсам клетки, в цитоплазме начинается формирование веретена деления.

3) Метафаза – заканчивается формирование веретена деления: хромосомы выстраиваются по экватору клетки, образуется метафазная пластинка

4) Анфаза – дочерние хромосомы отделяются друг от друга (хроматиды становятся хромосомами) и расходятся к полюсам

5) Телофаза

  • хромосомы деспирализуются (раскручиваются, деконденсируются) до состояния хроматина;

  • появляются ядро и ядрышки;

  • нити веретена деления разрушаются;

  • происходит цитокинез – разделение цитоплазмы материнской клетки на две дочерних.

Таким образом, в результате митоза из одной клетки получаются две, каждая из которых имеет характерное для данного вида организма число и форму хромосом, а, следовательно, постоянное количество ДНК.

 

 

    1. Продолжительность митоза

Собственно митоз зачастую протекает сравнительно быстро. Средняя продолжительность составляет 1-2 часа, что занимает всего около 10 % времени клеточного цикла. К примеру, у делящихся клеток меристемы корней интерфаза составляет 16-30 часов, а митоз длится всего 1-3 часа. Для эпителиальных клеток кишечника мыши интерфазный период составляет порядка 20-22 часов, а митоз продолжается в течение 1 часа. В клетках животных митоз обычно протекает быстрее и длится в среднем 30-60 минут, в то время как в растительных клетках средняя продолжительность митоза составляет 2-3 часа. Известны исключения с противоположными показателями. К примеру, в животных клетках продолжительность митоза может достигать 3,8 часов (эпидермис мыши). Или же встречаются растительные объекты с длительностью митоза в 5 минут. Наиболее интенсивно митоз протекает в эмбриональных клетках (10-40 минут в дробящихся яйцеклетках).

Длительность митоза находится в зависимости от целого ряда факторов: размеров делящейся клетки, её плоидности, числа ядер. Частота клеточных делений также зависит от степени дифференцировки клеток и специфики выполняемых функций. Так, нейроны или клетки скелетной мышцы человека не делятся совсем; клетки печени обычно делятся раз в один или два года, а некоторые эпителиальные клетки кишечника делятся чаще, чем 2 раза в сутки.

Темп клеточного деления зависит также от условий окружающей среды, в частности, от температуры. Повышение температуры окружающей среды в физиологических пределах повышает скорость митоза, что может быть объяснено обычной закономерностью кинетики химических реакций.

 

  1. Биологическое значение митоза

Биологическое значение митоза определяется сочетанием в нем удвоения хромосом путем продольного расщепления их и равномерного распределения между дочерними клетками. Началу митоза предшествует период подготовки, включающий накопление энергии, синтез дезоксирибонуклеиновой кислоты (ДНК) и репродукцию центриолей. Источником энергии служат богатые энергией, или так называемые макроэргические, соединения. Митоз не сопровождается усилением дыхания, т. к. окислительные процессы происходят в интерфазе (наполнение «энергетического резервуара»). Периодическое наполнение и опустошение энергетического резервуара - основа энергетики митоза

Образовавшиеся в результате этого способа деления дочерние клетки являются генетически идентичными материнской. Митоз обеспечивает постоянство хромосомного набора в ряду поколений клеток. Лежит в основе таких процессов, как рост, регенерация, бесполое размножение и др.  
Митоз - приводит к увеличению числа клеток, росту организма. Обеспечивает вегетативное размножение и регенерацию.  

6. Мейоз. Определение

Мейоз (от греч. meiosis - уменьшение) - способ деления клетки, в результате которого происходит уменьшение (редукция) числа хромосом в дочерних клетках; основное звено образования половых клеток. В ходе мейоза одна диплоидная клетка (содержит 2 набора хромосом) после двух последовательных делений дает начало 4 гаплоидным (содержат по одному набору хромосом) половым клеткам. При слиянии мужских и женских половых клеток диплоидный набор хромосом восстанавливается.

Редукционное деление, деления созревания, способ деления клеток, в результате которого происходит уменьшение (редукция) числа хромосом в два раза и одна диплоидная клетка (содержащая два набора хромосом) после двух быстро следующих друг за другом делений даёт начало 4 гаплоидным (содержащим по одному набору хромосом). Восстановление диплоидного числа хромосом происходит в результате оплодотворения. Мейоз — обязательное звено полового процесса и условие формирования половых клеток (гамет).

Мейоз лежит в основе образования половых клеток (гамет) у животных и спор у растений. Обеспечивает возможность полового размножения и комбинативную изменчивость потомства.

7. Стадии (фазы) мейоза и их продолжительность

Мейоз включает два деления клеток, которые называют соответственно мейоз I и мейоз II. Каждое из этих делений формально состоит из тех же стадий, что и митоз: профазы, метафазы, анафазы и телофазы.

Мейоз I называют также редукционным делением, так как в результате этого деления число хромосом во вновь образующихся клетках уменьшается в 2 раза.

В профазу I хромосомы уже входят разделенными на хроматиды, которые соединены в центромере. Именно на этой стадии мейоза происходит чрезвычайно важное событие с точки зрения создания генетического разнообразия — обмен гомологичными участками несестринских хроматид, т.е. хроматид, относящихся к разным парам гомологичных хромосом. Данный обмен называют кроссинговером, или рекомбинацией.

Профаза I мейоза продолжается достаточно долго, ее принято делить на 5 стадий: лептотену, зиготену, пахитену, диплотену и диакинез. В стадии лептотены хромосомы начинают конденсироваться и становятся видимыми. В зиготене пары гомологичных хромосом конъюгируют (спариваются) и формируют характерную двойную структуру, которую называют синоптенемальным комплексом. Две конъюгированные гомологичные хромосомы называют бивалентом. В пахитене хромосомы становятся короче вследствие большей спирализации. В каждой хромосоме теперь видна продольная щель — хромосома разделяется на хроматиды. Бивалент представлен 4 хроматидами, расположенными бок о бок друг к другу: несестринские хроматиды бивалента соединяются между собой в некоторых точках, образуя так называемые хиазмы. Хиазмы являются цитологическим проявлением обменов генетическим материалом между гомологичными хромосомами. Эти обмены в формальной генетике называют кроссинговером. Каждая хиазма соответствует одному событию кроссинговера. По-видимому, кроссинговер происходит за счет механизма разрыва и последующего крестообразного соединения несестринских хроматид в гомологичных участках. Кроссинговер осуществляется с очень большой точностью, поэтому ни одна из хроматид не теряет и не приобретает генов. Более того, если кроссинговер происходит в последовательности одного гена, то не теряется и не приобретается ни один нуклеотид в хроматидах, обменивающихся участками гомологичной ДНК. Молекулярные события во время кроссинговера представляются следующим образом. Обе нити ДНК одной из несестринских хроматид разрезаются (двунитевой разрыв). Специальный фермент откусывает примерно 600—800 нуклеотидов с 5-конца от разрыва в каждой из нитей. В результате образуется два 3-«хвоста» однонитевой ДНК. Один из хвостов вставляется между двумя нитями ДНК второй несестринской хроматиды. Этот хвост находит комплементарную последовательность нуклеотидов в одной из нитей несестринской хроматиды и спаривается с ней. Смещенная нить ДНК второй хроматиды спаривается со вторым З-хвостом хроматиды.

В диплотене мейоза гомологичные хромосомы начинают расходиться, удерживаясь только в тех точках, где наблюдаются хиазмы. Хиазм образуется больше в крупных хромосомах, всего же на одну гамету приходится примерно 40 кроссинговеров. Некоторые исследователи считают, что отсутствие хиазм в биваленте является фактором, предрасполагающим к нерасхождению хромосом. В диакинезе хромосомы максимально конденсируются по мере их расхождения, гомологичные хромосомы продолжают удерживаться хиазмами, которые сдвигаются дистально.

В метафазе I мейоза исчезает ядерная оболочка и хромосомы распределяются в экваториальной плоскости клетки. К центромерам прикрепляются нити веретена, как в митозе, и начинают оттягивать их к полюсам клетки.

В анафазе завершается терминализация хиазм, т.е. они перемещаются к концам хромосом и исчезают. Гомологичные хромосомы перемещаются к противоположным полюсам за счет сокращения нитей веретена.

В результате в телофазе I у полюсов клетки собираются гаплоидные наборы хромосом и зародышевая клетка, завершая деление, дает начало двум новым дочерним клеткам, которые в сперматогенезе называют вторичными сперматоцитами, а в оогенезе — ооцитами.

 

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы:

Профаза II — происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления, перпендикулярное первому веретену.

Метафаза II — унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.

Анафаза II — униваленты делятся и хроматиды расходятся к полюсам.

Телофаза II — хромосомы деспирализуются и появляется ядерная оболочка.

В результате из одной диплоидной клетки образуется четыре гаплоидных клетки. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и три так называемых редукционных тельца (абортивные дериваты первого и второго делений).

 

8. Биологическое значение мейоза

Биологическое значение мейоза заключается в поддержании постоянства кариотипа в ряду поколений организмов данного вида и обеспечении возможности рекомбинации хромосом и генов при половом процессе. Мейоз - один из ключевых механизмов наследственности и наследственной изменчивости. Поведение хромосом при мейозе обеспечивает выполнение основных законов наследственности. Мейоз обеспечивает также комбинативную изменчивость – появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.  

9. Сравнение митоза и мейоза

А) Отличия мейоза от митоза по итогам

1. После митоза получается две клетки, а после мейоза – четыре.

2. После митоза получаются соматические клетки (клетки тела), а после мейоза – половые клетки (гаметы – сперматозоиды и яйцеклетки; у растений после мейоза получаются споры).

3. После митоза получаются одинаковые клетки (копии), а после мейоза – разные (происходит рекомбинация наследственной информации).

Информация о работе Митоз и мейоз. Биологическое значение