Молекулярная биология

Автор работы: Пользователь скрыл имя, 20 Июня 2014 в 22:51, контрольная работа

Краткое описание

Молекулярная биология, наука, ставящая своей задачей познание природы явлений жизнедеятельности путём изучения биологических объектов и систем на уровне, приближающемся к молекулярному, а в ряде случаев и достигающем этого предела. Конечной целью при этом является выяснение того, каким образом и в какой мере характерные проявления жизни, такие, как наследственность, воспроизведение себе подобного, биосинтез белков, возбудимость, рост и развитие, хранение и передача информации, превращения энергии, подвижность и т. д., обусловлены структурой, свойствами и взаимодействием молекул биологически важных веществ, в первую очередь двух главных классов высокомолекулярныхбиополимеров — белков и нуклеиновых кислот

Вложенные файлы: 1 файл

Молекулярная биология.docx

— 2.18 Мб (Скачать файл)

Задачи молекулярной биологии. Наряду с указанными важными задачами М. б. (познанием закономерностей "узнавания", самосборки и интеграции) актуальным направлением научного поиска ближайшего будущего является разработка методов, позволяющих расшифровывать структуру, а затем и трёхмерную, пространственную организацию высокомолекулярных нуклеиновых кислот. В данное время это достигнуто в отношении общего плана трёхмерной структуры ДНК (двойной спирали), но без точного знания её первичной структуры. Быстрые успехи в разработке аналитических методов позволяют с уверенностью ждать достижения указанных целей на протяжении ближайших лет. Здесь, разумеется, главные вклады идут от представителей смежных наук, в первую очередь физики и химии. Все важнейшие методы, использование которых обеспечило возникновение и успехи М. б., были предложены и разработаны физиками (ультрацентрифугирование, рентгеноструктурный анализ, электронная микроскопия, ядерный магнитный резонанс и др.). Почти все новые физические экспериментальные подходы (например, использование ЭВМ, синхротронного, или тормозного, излучения, лазерной техники и др.) открывают новые возможности для углублённого изучения проблем М. б. В числе важнейших задач практического характера, ответ на которые ожидается от М. б., на первом месте стоит проблема молекулярных основ злокачественного роста, далее — пути предупреждения, а быть может, и преодоления наследственных заболеваний — "молекулярных болезней". Большое значение будет иметь выяснение молекулярных основ биологического катализа, т. е. действия ферментов. К числу важнейших современных направлений М. б. следует отнести стремление расшифровать молекулярные механизмы действия гормонов, токсических и лекарственных веществ, а также выяснить детали молекулярного строения и функционирования таких клеточных структур, как биологические мембраны, участвующие в регуляции процессов проникновения и транспорта веществ. Более отдалённые цели М. б. — познание природы нервных процессов, механизмов памяти и т. д. Один из важных формирующихся разделов М. б. — т. н. генная инженерия, ставящая своей задачей целенаправленное оперирование генетическим аппаратом (геномом) живых организмов, начиная с микробов и низших (одноклеточных) и кончая человеком (в последнем случае прежде всего в целях радикального лечения наследственных заболеванийи исправления генетических дефектов). О более обширных вмешательствах в генетическую основу человека речь может идти лишь в более или менее отдалённом будущем, т. к. при этом возникают серьёзные препятствия как технического, так и принципиального характера. В отношении микробов, растений, а возможно, и с.-х. животных такие перспективы весьма обнадёживающи (например, получение сортов культурных растений, обладающих аппаратом фиксации азота из воздуха и не нуждающихся в удобрениях). Они основаны на уже достигнутых успехах: изолирование и синтез генов, перенос генов из одного организма в другой, применение массовых культур клеток в качестве продуцентов хозяйственных или медицинских важных веществ.

Организация исследований по молекулярной биологии. Быстрое развитие М. б. повлекло за собой возникновение большого числа специализированных научно-исследовательских центров. Количество их быстро возрастает. Наиболее крупные: в Великобритании — Лаборатория молекулярной биологии в Кембридже, Королевский институт в Лондоне; во Франции — институты молекулярной биологии в Париже, Марселе, Страсбуре, Пастеровский институт; в США — отделы М. б. в университетах и институтах в Бостоне (Гарвардский университет, Массачусетсский технологический институт), Сан-Франциско (Беркли), Лос-Анджелесе (Калифорнийский технологический институт), Нью-Йорке (Рокфеллеровский университет), институты здравоохранения в Бетесде и др.; в ФРГ — институты Макса Планка, университеты в Гёттингене и Мюнхене; в Швеции — Каролинский институт в Стокгольме; в ГДР — Центральный институт молекулярной биологии в Берлине, институты в Йене и Галле; в Венгрии — Биологический центр в Сегеде. В СССР первый специализированный институт М. б. был создан в Москве в 1957 в системе АН СССР (см.Молекулярной биологии институт); затем были образованы: институт биоорганической химии АН СССР в Москве, институт белка в Пущине, Биологический отдел в институте атомной энергии (Москва), отделы М. б. в институтах Сибирского отделения АН в Новосибирске, Межфакультетская лаборатория биоорганической химии МГУ, сектор (затем институт) молекулярной биологии и генетики АН УССР в Киеве; значительная работа по М. б. ведётся в институте высокомолекулярных соединений в Ленинграде, в ряде отделов и лабораторий АН СССР и других ведомств.

Наряду с отдельными научно-исследовательскими центрами возникли организации более широкого масштаба. В Западной Европе возникла Европейская организация по М. б. (ЕМБО), в которой участвует свыше 10 стран. В СССР при институте молекулярной биологии в 1966 создан научный совет по М. б., являющийся координирующим и организующим центром в этой области знаний. Им выпущена обширная серия монографий по важнейшим разделам М. б., регулярно организуются "зимние школы" по М. б.,проводятся конференции и симпозиумы по актуальным проблемам М. б. В дальнейшем научные советы по М. б. были созданы при АМН СССР и многих республиканских Академиях наук. С 1966 выходит журнал "Молекулярная биология" (6 выпусков в год).

За сравнительно короткий срок в СССР вырос значительный отряд исследователей в области М. б.; это учёные старшего поколения, частично переключившие свои интересы из др. областей; в главной же своей массе это многочисленные молодые исследователи. Из числа ведущих учёных, принявших деятельное участие в становлении и развитии М. б. в СССР, можно назвать таких, как А. А. Баев, А. Н. Белозерский, А. Е. Браунштейн, Ю. А. Овчинников, А. С. Спирин, М. М. Шемякин, В. А. Энгельгардт. Новым достижениям М. б. и молекулярной генетики будет способствовать постановление ЦК КПСС и Совета Министров СССР (май 1974) "О мерах по ускорению развития молекулярной биологии и молекулярной генетики и использованию их достижений в народном хозяйстве".

Лит.: Вагнер Р., Митчелл Г., Генетика и обмен веществ, пер. с англ., М., 1958; Сент-Дьердь и А., Биоэнергетика, пер. с англ., М., 1960; Анфинсен К., Молекулярные основы эволюции, пер. с англ., М., 1962; Стэнли У., Вэленс Э., Вирусы и природа жизни, пер. с англ., М., 1963; Молекулярная генетика, пер. с. англ., ч. 1, М., 1964; Волькенштейн М. В., Молекулы и жизнь. Введение в молекулярную биофизику, М., 1965; Гауровиц Ф., Химия и функции белков, пер. с англ., М., 1965; Бреслер С. Е., Введение в молекулярную биологию, 3 изд., М. — Л., 1973; Ингрэм В., Биосинтез макромолекул, пер. с англ., М., 1966; Энгельгардт В. А., Молекулярная биология, в кн.: Развитие биологии в СССР, М., 1967; Введение в молекулярную биологию, пер. с англ., М., 1967; Уотсон Дж., Молекулярная биология гена, пер. с англ., М., 1967; Финеан Дж., Биологические ультраструктуры, пер. с англ., М., 1970; Бендолл Дж., Мышцы, молекулы и движение, пер. с англ., М., 1970; Ичас М., Биологический код, пер. с англ., М., 1971; Молекулярная биология вирусов, М., 1971; Молекулярные основы биосинтеза белков, М., 1971; Бернхард С., Структура и функция ферментов, пер. с англ., М., 1971; Спирин А. С., Гаврилова Л. П., Рибосома, 2 изд., М., 1971; Френкель-Конрат Х., Химия и биология вирусов, пер. с англ., М., 1972; Смит К., Хэнеуолт Ф., Молекулярная фотобиология. Процессы инактивации и восстановления, пер. с англ., М., 1972; Харрис Г., Основы биохимической генетики человека, пер. с англ., М., 1973. 

 В. А. Энгельгардт.

Яндекс.Словари › БСЭ. — 1969—1978

I. Белок - субстрат жизни 
Основу жизнедеятельности живых организмов составляют процессы превращения веществ (окисление, восстановление, расщепление, синтез). В течение жизни каждая клетка усваивает и продуцирует различные вещества, строит и обновляет свои структуры, выполняет определенные функции. Основным строительным материалом в клетке является белок (матриксы цитоплазмы, ядра, митохондрий, пластид; мембранные и немембранные органоиды) - это структурные белки.  
Особую группу структурных белков составляют сократительные белки, которые формируют опорно-двигательные элементы клетки (микротрубочки, микрофиламенты, микрофибриллы) и определяют движение клеток, деление, фагоцитоз и др. К таким белкам относятся: актин, тубулин, миозин и др. Превращение веществ в клетке осуществляется с помощью ферментов, химической основой которых являются белки. Таким образом, структурная (пластическая) и каталитическая (ферментативная) функции являются главными функциями белка в любой клетке, именно белки определяют и строение клетки и процессы ее жизнедеятельности. Кроме этого, белки выполняют многочисленные функции в клетке и организме (табл. 2).  
 

 
 
Белки являются универсальными молекулами и имеют принципиально сходное строение у животных, растений, бактерий и вирусов. Каждый белок в своей первичной структуре представляет собой цепочку аминокислот, соединенных пептидными связями (полипептид). Но в то же время, организмы разных видов различаются своими белками; разные ткани одного и того же организма построены из разных белков (соединительная ткань - коллаген; мышечная ткань - актин, миозин, миоглобин; ногти, волосы - кератин и т.д.); имеются индивидуальные отличия организмов по строению белков - следовательно, белки обладают специфичностью. Специфичность белков обусловлена особенностью первичной структуры. Полипептидные цепи различаются между собой набором аминокислот, последовательностью их расположения и количеством. Разнообразие белков огромно.  
 
II. Нуклеиновые кислоты 
В многоклеточном организме клетки дифференцируются и поэтому, клетки одной ткани сходны, а клетки разных тканей различаются по морфологии и функциям. При делении каждая клетка образует себе подобные дочерние клетки (из клеток печени образуются клетки печени; из клеток кожи - клетки кожи). Чтобы синтезировать белки, характерные для данного типа клеток, чтобы воспроизводить себе подобных - необходимо иметь информацию, заключенную в каком-то материальном субстрате, которую: а) можно использовать в процессе жизнедеятельности и б) передавать дочерним клеткам при делении. Это обеспечивает преемственность в строении и функции клеток и организмов в поколениях. Материальным субстратом - носителем генетической информации является ДНК (у некоторых вирусов - РНК). Реализация генетической информации происходит с участием различных РНК (мРНК, тРНК, рРНК). Нуклеиновые кислоты - биополимеры, состоящие из мономеров-нуклеотидов. Любой нуклеотид состоит из трёх частей: углевода, остатка фосфорной кислоты и азотистого основания. Каждая молекула нуклеиновой кислоты - это определённые последовательности нуклеотидов. При соединении нуклеотидов в цепь образуются связи между углеводом и остатком фосфорной кислоты. Углеродный атом в 5 положении рибозы (дезоксирибозы) одного нуклеотида соединяется через фосфатную группу с углеродным атомом в 3 положении сахара предыдущего нуклеотида.  
Таким образом, первый нуклеотид в цепи имеет свободный углеродный атом в 5 положении, а последний - в 3 положении (рис. 9), поэтому концы 
 

 
 
полинуклеотидных цепей обозначаются как 5/ и 3/. В молекуле ДНК две полинуклеотидные цепи, они антипараллельны, то есть там, где у одной цепи 5/ конец - у второй - 3/ конец и наоборот. 
Принципиально строение ДНК и РНК сходно, но есть и отличия: молекула ДНК состоит из двух полинуклеотидных цепей (РНК - одна цепь), в состав ДНК входит углевод дезоксирибоза (РНК - рибоза), в состав ДНК входят азотистые основания - аденин, тимин, гуанин, цитозин (в РНК вместо тимина входит урацил). Нуклеотиды одной цепи ДНК (РНК) различаются между собой только азотистым основанием. Две цепи нуклеотидов ДНК соединяются водородными связями по правилу комплементарности: А-Т; Г-Ц. 
ДНК содержится в ядре клетки, РНК - в ядре (в основном, в ядрышке) и цитоплазме (гиалоплазма, рибосомы). Кроме того, некоторые органоиды имеют собственную ДНК и все виды РНК (митохондрии, пластиды). 
ДНК была открыта в 1869 году (Мишер), но только в 1953 году было расшифровано строение этой молекулы (Уотсон и Крик). 
Основная биологическая роль ДНК состоит в хранении, передаче и самовоспроизведении наследственной (генетической) информации.  
Строение ДНК универсально (принципиально одинаково у всех живых организмов), но разные молекулы ДНК различаются между собой.  
Специфичность ДНК зависит от нуклеотидного состава, последовательности нуклеотидов, количества нуклеотидов. Таким образом, от того какие нуклеотиды входят в состав молекулы, как они расположены и сколько их, зависит объём информации и её смысл. 
В строении ДНК содержится информация о структуре белков организма и рибонуклеиновых кислот (тРНК, рРНК). 
Наследственный аппарат организован по-разному у вирусов, прокариот и эукариот. У вирусов - это может быть молекула ДНК или РНК (различной структурной организации). 
У прокариот генетический аппарат представлен двухцепочечной кольцевой молекулой ДНК (нуклеоид, генофор), в которой содержится основная видовая наследственная информация, и плазмоном - совокупностью автономных генетических элементов. Это мелкие кольцевые молекулы ДНК - плазмиды и эписомы, содержащие ограниченную информацию о некоторых признаках данного организма (в плазмидах R находятся гены устойчивости к антибиотикам;эписомы F определяют способность к размножению). Плазмиды и эписомы способны к репликации и перемещению из клетки в клетку при конъюгации. 
У эукариот генетический аппарат представлен надмолекулярными структурами - хромосомами, химической основой которых является хроматин (ДНК + белки). Хроматин может быть конденсирован, неактивный - гетерохроматин, или деконденсирован, активный - эухроматин (см. стр. 24). Не вся ДНК эукариот является информативной. Большая часть ее представлена регуляторными последовательностями. Многие участки повторяются в геноме (умеренные и высокие повторы). 
Основные различия в организации генетического материала у про- и эукариот сведены в таблицу 3. 
 

 
 
III. Генетический код, его  характеристика 
Смысл генетической информации зашифрован в молекуле ДНК. Генетический код - это система записи генетической информации, которая используется клеткой в процессе жизнедеятельности. Другими словами - это система расположения нуклеотидов в молекуле ДНК,  
определяющая последовательность аминокислот в молекуле белка (правило коллинеарности). Единицей генетического кода является триплет нуклеотидов в молекуле ДНК (кодон), который соответств ует одной аминокислоте. 
Генетический код характеризуется: 
а) универсальностью (другого способа записи генетической информации в природе нет) 
б) триплетностью (единица генетического кода - триплет нуклеотидов - кодон) 
в) избыточностью (вырожденностью) 
г) однозначностью 
д) наличием смысловых, терминирующих и инициирующих кодонов. 
 
IV. Реализация генетической информации в клетке 
Реализация генетической информации происходит в течение всей жизни клетки в процессе биосинтеза белков, характерных для данного вида организмов (клеток). 
Интенсивность биосинтеза белка наибольшая в интерфазе, снижается к началу деления, почти нулевая при делении и возрастает сразу после деления. Биосинтез белка можно разделить на два этапа: транскрипция (происходит в ядре на ДНК) и трансляция (происходит в цитоплазме на рибосомах).  
Функциональной единицей, которая участвует в транскрипции, является цистрон - отрезок ДНК состоящий из трёх частей: 
а) промотор (около 40 пар последовательностей), с которым связывается фермент РНК-полимераза; 
б) последовательности, соответствующие структурному гену;  
в) терминальный участок (трейлер), где заканчивается транскрипция. 
Биологической сущностью транскрипции является "переписывание" генетической информации с молекулы ДНК на РНК, а химической - синтез молекулы мРНК. Биологической сущностью трансляции является перевод информации с языка нуклеотидов на язык аминокислот (расшифровка генетического кода), а химической - синтез полипептидной цепочки.  
Оба процесса относятся к реакциям матричного синтеза, которые характеризуются: наличием молекулы-образца (матрицы), энергии, специфического фермента, выполнением правила комплементарности и протекают в три этапа (инициация, элонгация, терминация). У прокариот синтезированная мРНК сразу может служить матрицей для трансляции. 
У эукариот информативные последовательности структурного гена (экзоны) разделены неинформативными (интроны). Первичный транскрипт включает как экзоны, так и интроны - это незрелая или про-мРНК. Затем начинается процессинг (созревание мРНК), в результате которого удаляются интроны и образуется зрелая мРНК, состоящая только из экзонов. Процессинг состоит из двух этапов: сплайсинга и модификации (рис. 10). 
 

Информация о работе Молекулярная биология