Объекты биотехнологии в пищевой промышленности

Автор работы: Пользователь скрыл имя, 14 Декабря 2014 в 14:08, курсовая работа

Краткое описание

Биотехнология - междисциплинарная область научно-технического прогресса, возникшая на стыке биологических, химических и технических знаний, целью которой является промышленное производство товаров и услуг с использованием живых организмов, биологических систем и процессов. Важной отраслью биотехнологии является пищевая биотехнология, которая направлена на решение проблем дефицита продуктов питания, повышения их качества и разработки новых пищевых продуктов с использованием биотехнологических методов и приемов.

Содержание

Введение…………………………………………………………………………...3
Глава 1.Основные разделы биотехнологии и их характеристика……………...5
Глава 2.Клетка как основной объект биотехнологических
исследований………………………………………………………..…12
Глава 3. Механизмы синтеза и распада веществ в живой клетке.
Биополимеры и их производные……………………………………..18
Глава 4. Классификация направлений пищевой биотехнологии по
целевым продуктам………………………………………………...…26
Глава 5. Объекты биотехнологии в пищевой промышленности……..........…30
Заключение…………………………………………………………………..…...36
Библиографический список…………………………..…………………………37

Вложенные файлы: 1 файл

биотехнология (Автосохраненный).docx

— 59.61 Кб (Скачать файл)

 И, наконец, биотехнология  помогает в повышении качества  сельскохозяйственного сырья путем  снижения содержания натуральных  растительных токсинов, обнаруженных  в некоторых культурах, в том  числе в картофеле и маниоке.

Биологические методы включают:

- микробиологический синтез

- генетическую инженерию

- клеточную и белковую инженерию

- инженерную энзимологию

- культивирование клеток растений, животных и бактерий

- методы слияния клеток

Биотехнология как наука возникла на стыке слияния биологических, химических и технических наук.

Основные разделы биотехнологии.

Микробная биотехнология – основная часть биотехнологии.

Связана с поисками новых природных продуцентов. Это генетика и селекция известных микроорганизмов и получение штаммов с высокой продуктивностью.

Методы – индуцированный мутагенез или ступенчатый отбор лучших форм или генная инженерия.

Связана с производством различных пищевых продуктов: вино, хлеб, молочные продукты и прочее.

  1. Инженерная инзимология

Цель – создание технологических процессов с использованием ферментов.

Решает конкретные задачи:

– Создание нового продукта или улучшение его качества;

– использование нетрадиционных видов сырья;

– разработка безотходных технологий.

Очень перспективно исследование иммобилизированных ферментов и клеток на носителе.

Этот метод применяется в медицине для лечения и диагностики различных заболеваний. Иммобилизированные клетки применяют при биологической очистке сточных вод.

Тканевые ферменты животных и растений способствуют формированию химических предшественников вкуса и аромата, консистенции за счет специфической деструкции биополимерных систем пищевого сырья, т.е. осуществляют созревание.

3) Генная инженерия.

Цель – направленное создание организмов с заданными свойствами на основе изменения (рекомбинации) их генотипа.

Генная инженерия позволяет изолировать или изменять отдельные гены, модифицируя молекулу ДНК и перенося ее из одного организма в другой.

Амплификация нужных генов.

4) Клеточная инженерия.

Объект – культуры клеток высших животных или растительных организмов.

Получают культивированием на различных средах отдельно выделенных из организмов клеток.

Задача – конструирование новых клеток и клеточных систем.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Глава 2. Клетка как основной объект биотехнологических исследований

 

1) Живым организмам свойственные  общие принципы структуры:

I. – единство элементарного состава;

II. – единство типов химических соединений;

III. – единство субклеточной организации;

IV. – единство клеточного строения.

2) Строение клетки и  функции клеточных органелл.

а) клеточные мембраны

- Цитоплазматическая мембрана

- рецепторы клеточной мембраны

- избирательная проницаемость

- билипидный слой с интегральными белками мембраны

- перефирийные белки.

- компоненты липидного слоя – фосфолипидная (строение) – функция.

- мембранные белки – ферменты, их функции.

- гилкопротеиды поверхностного слоя.

Транспорт веществ через мембраны.Четыре основных механизма транспорта:

– диффузия

– осмос

– активный транспорт (направление движения ионов Na, К и Cl).

– экзо и эндоцитоз.

б) Эндоплазматический ретикулум (ЭР)

- гладкий;

- «шероховатый» или глянулярный ф-ция.

в) Аппарат Гольджи.

г) Цытоплазма

д) Ядро.

е) Митохондрии.

ж) Рибосомы.Типы рибосом: 70 S и 80 S

з) Лизосомы.

и) Вакуоль.

к) Клеточная стенка.

л) Пластиды.Типы пластид:

- хлоропласты

- лейкопласты

- хромопласты.

Особенности прокариотической (бактериальной) – протоцит и эукариотической клеток – эуцит. Плазмиды – присущи только протоциту.Автономно реплицирующие кольцевые ДНК.Не более 100 генов.

Особенности строения клеточной стенки – наличие муреина.

Учёные разработали методы выращивания в искусственных условиях (культивирование) клеток растений животных и даже человека. Культивирование клеток позволяет получать различные ценные продукты, ранее добываемые в очень ограниченном количестве из-за отсутствия источников сырья. Особенно успешно развивается клеточная инженерия растений. Используя методы генетики, удаётся отбирать линии таких клеток растений — продуцентов практически важных веществ, которые способны расти на простых питательных средах и в то же время накапливать ценных продуктов в несколько раз больше, чем само растение. Выращивание массы клеток растений уже используется в промышленных масштабах для получения физиологически активных соединений. Налажено, например, производство биомассы женьшеня для нужд парфюмерной и медицинской промышленности. Закладываются основы производства биомассы лекарственных растений — диоскореи и раувольфии. Разрабатываются способы выращивания клеточной массы других редких растений — продуцентов ценных веществ (родиолы розовой и др.). Другое важное направление клеточной инженерии — клональное микроразмножение растений на основе культуры тканей. Основан это метод на удивительном свойстве растений: из отдельной клетки или кусочка ткани в определённых условиях может вырасти целое растение, способное к нормальному росту и размножению. Этим методом из небольшой части растения можно получить до 1 млн. растений в год. Клональное микроразмножение используется для оздоровления и быстрого размножения редких, хозяйственно ценных или вновь созданных сортов сельскохозяйственных культур. Таким путём из клеток, не заражённых вирусами, получают здоровые растения картофеля, винограда, сахарной свёклы, садовой земляники, малины и многих других культур. В настоящее время разработаны методы микроразмножения и более сложных объектов — древесных растений (яблони, ели, сосны). На основе этих методов будут созданы технологии промышленного получения исходного посадочного материала ценных древесных пород. Методы клеточной инженерии позволят значительно ускорить селекционный процесс при выведении новых сортов хлебных злаков и других важных сельскохозяйственных культур: срок их получения сокращается до 3-4 лет (вместо 10-12 лет, необходимых при использовании обычных методов селекции). Перспективных способом выведения новых сортов ценных сельскохозяйственных культур является также разработанный учёными принципиально новый метод слияния клеток. Этот метод позволяет получать гибриды, которые не могут быть созданы обычным путём скрещивания в силу барьера межвидовой несовместимости. Методом слияния клеток получены, например, гибриды различных видов картофеля, томатов, табака; табака и картофеля, рапса и турнепса, табака и белладонны. На основе гибрида культурного и дикого картофеля, который устойчив к вирусам и другим заболеваниям, создаются новые сорта. Аналогичным способом получают ценный селекционный материал томатов и других культур. В перспективе — комплексное использование методов генетической и клеточной инженерии для создания новых сортов растений с заранее заданными свойствами, например, ос сконструированными в них системами фиксации атмосферного азота. Большие успехи достигнуты клеточной инженерией в области иммунологии: разработаны методы получения особых гибридных клеток, производящих индивидуальные, или моноклональные, антитела. Это позволило создать высокочувствительные средства диагностики ряда тяжёлых заболеваний человека, животных и растений. Значительный вклад вносит современная биотехнология в решение такой важной проблемы, как борьба с вирусными заболеваниями сельскохозяйственных культур, наносящими большой ущерб народному хозяйству. Учёные разработали высокоспецифичные сыворотки для выявления более 20 вирусов, вызывающих заболевания различных сельскохозяйственных культур. Разработана и изготовлена система приборов и приспособлений для массовой автоматической экспресс-диагностики вирусных болезней растений в условиях сельскохозяйственного производства. Новые методы диагностики позволяют отбирать для посадки свободный от вирусов исходный материал (семена, клубни и др.), что способствует значительному повышению урожая. Важное практическое значение имеют работы по инженерной энзимологии. Первым важным успехом её была иммобилизация ферментов — закрепление молекул ферментов с помощью прочных химических связей на синтетических полимерах, полисахаридах и других носителях-матрицах. Закреплённые ферменты более стабильны, их можно использовать многократно. Иммобилизация позволяет осуществлять непрерывные каталитические процессы, получать продукцию, не загрязнённую ферментом (что особенно важно в ряде пищевых и фармакологических производств), значительно снизить её себестоимость. Это метод применяют, например, для получения антибиотиков. Так, учёными разработана и внедрена в промышленное производство технология получения антибиотиков на основе иммобилизованного фермента пенициллинамидазы. В результате применения этой технологии в пять раз снизился расход сырья, себестоимость конечного продукта уменьшилась почти вдвое, объём производства возрос в семь раз, а общий экономический эффект составил около 100 млн. рублей. Следующим шагом инженерной энзимологии была разработка методов иммобилизации клеток микроорганизмов, а затем — клеток растений и животных. Иммобилизованные клетки являются наиболее экономичными биокатализаторами, так как обладают высокой активностью и стабильностью, а главное — применение их полностью исключает затраты на выделение и очистку ферментов. В настоящее время на основе иммобилизованных клеток разработаны методы получения органических кислот, аминокислот, антибиотиков, стероидов, спиртов и других ценных продуктов. Иммобилизованные клетки микроорганизмов используются также для очистки сточных вод, переработки сельскохозяйственных и промышленных отходов. Биотехнология находит всё более широкое применение и во многих отраслях промышленного производства: разработаны методы использования микроорганизмов для извлечения цветных благородных металлов из руд и промышленных отходов, для повышения нефтеотдачи пластов, для борьбы с метаном в угольных шахтах. Так, для освобождения шахт от метана учёные предложили бурить скважины в угольных пластах и подавать в них суспензию из метаноокисляющихся бактерий. Таким образом удаётся удалить около 60% метана ещё до начала эксплуатации пласта. А недавно нашли более простой и эффективный способ: суспензией из бактерий опрыскивают породы выработанного пространства, откуда наиболее интенсивно выделяется газ. Разбрызгивание суспензии можно осуществлять с помощью специальных форсунок, устанавливаемых на крепях. Испытания, которые были проведены на шахтах Донбасса, показали, что микроскопические «работники» быстро уничтожают от 50 до 80 % опасного газа в выработках. А вот с помощью других бактерий, которые сами выделяют метан, можно повышать давление в нефтяных пластах и обеспечивать более полное извлечение нефти. Значительный вклад предстоит внести биотехнологии и в решение энергетической проблемы. Ограниченность запасов нефти и газа заставляет искать пути использования нетрадиционных источников энергии. Один из таких путей — биоконверсия растительного сырья, или, другими словами, ферментативная переработка целлюлозосодержащих отходов промышленности и сельского хозяйства. В результате биоконверсии можно получить глюкозу, а из неё — спирт, который и будет служить топливом. Всё шире развёртываются исследования по получению биогаза (в основном метана) путём переработки животноводческих, промышленных и коммунальных отходов с помощью микроорганизмов. При этом остатки после переработки являются высокоэффективным органическим удобрением. Таким образом, этим путём решаются сразу несколько проблем: охрана окружающей среды от загрязнений, получение энергии и производство удобрений. Установки по получению биогаза уже работают в разных странах. Возможности биотехнологии практически безграничны. Она смело вторгается в самые разные сферы народного хозяйства. И в недалёком будущем, несомненно, ещё более возрастёт практическая значимость биотехнологии в решении важнейших задач селекции, медицины, энергетики, охраны окружающей среды от загрязнений.[12]

биотехнология наука организм

 

 

 

 

 

 

 

 

 

 

Глава 3. Механизмы синтеза и распада веществ в живой клетке. Биополимеры и их производные

 

Обмен веществ, или метаболизм, — лежащий в основе жизни закономерный порядок превращения веществ и энергии в живых системах, направленный на их сохранение и самовоспроизведение; совокупность всех химических реакций, протекающих в организме. Таким образом, обмен веществ — существеннейший и непременный признак жизни.

С пищей в организм поступают из внешней среды разнообразные вещества. В организме они подвергаются изменениям (метаболизируются), в результате чего частично превращаются в вещества самого организма. В этом состоит процесс ассимиляции. В тесном взаимодействии с ассимиляцией протекает обратный процесс — диссимиляция. Вещества живого организма не остаются неизменными, а более или менее быстро расщепляются с выделением энергии; их замещают вновь ассимилированные соединения, а возникшие при разложении продукты распада выводятся из организма.

Химические процессы, протекающие в живых клетках, характеризуются высокой степенью упорядоченности: реакции распада и синтеза определенным образом организованы во времени и пространстве, согласованы между собой и образуют целостную, тончайше отрегулированную систему, сложившуюся в результате длительной эволюции. Теснейшая взаимосвязь между процессами ассимиляции и диссимиляции проявляется в том, что последняя служит не только источником энергии в организмах, но также источником исходных продуктов для синтетических реакций.

Ассимиляция

Первичные организмы использовали для питания органического вещества, возникшие абиогенным путем. При последующем развитии жизни у некоторых из живых существ возникла способность к синтезу органических веществ. По этому признаку все организмы могут быть разделены на гетеротрофов и автотрофов.

 У гетеротрофов, к которым  принадлежат все животные, грибы  и многие виды бактерий, обмен  веществ основан на питании  готовыми органическими веществами. Правда, они обладают способностью  усваивать некоторое, сравнительно  незначительное, количество CO2, используя  его для синтеза более сложных  органических веществ. Автотрофы (зеленые  растения и некоторые бактерии) не нуждаются в готовых органических  веществах и осуществляют их  первичный синтез из входящих  в их состав элементов. Некоторые  из автотрофов (серобактерии, железобактерии  и нитрифицирующие бактерии) используют  для этого энергию окисления  неорганических веществ.

Диссимиляция

 Источником энергии, необходимой  для поддержания жизни, роста, размножения, подвижности, возбудимости, являются  процессы окисления части тех  продуктов расщепления, которые  используются клетками для синтеза  структурных компонентов.

 Наиболее древним и  поэтому наиболее общим для  всех организмов является процесс  анаэробного расщепления органических  веществ, осуществляющийся без участия  кислорода. Позднее этот первоначальный  механизм получения энергии живыми  клетками дополнился окислением  образующихся промежуточных продуктов  кислородом воздуха, который появился  в атмосфере Земли в результате  фотосинтеза. Так возникло внутриклеточное, или тканевое, дыхание.

Связь обмена углеводов, липидов, белков и других соединений

Все биохимические процессы, происходящие в организме, тесно связаны друг с другом. Взаимосвязь обмена белков с окислительно-восстановительными процессами осуществляется различным образом. Отдельные биохимические реакции, лежащие в основе процесса дыхания, происходят благодаря каталитическому действию соответствующих ферментов – белков. Вместе с тем сами продукты расщепления белков — аминокислоты – могут подвергаться различным окислительно-восстановительным превращениям – декарбоксилированию, дезаминированию и др.

Кроме того, продукты дезаминирования аспарагиновой и глутаминовой кислот — щавелево-уксусная и a-кетоглутаровая кислоты — являются важнейшими звеньями окислительных превращений углеводов, происходящих в процессе дыхания.

Пировиноградная кислота — важнейший промежуточный продукт, образующийся при брожении и дыхании, — также тесно связана с белковым обменом: взаимодействуя с NH3 и соответствующим ферментом, она дает важную аминокислоту a-аланин. Теснейшая связь процессов брожения и дыхания с обменом липидов в организме проявляется в том, что фосфоглицериновый альдегид, образующийся на первых этапах диссимиляции углеводов, служит исходным веществом для синтеза глицерина. С другой стороны, в результате окисления пировиноградной кислоты получаются остатки уксусной кислоты, из которых синтезируются высокомолекулярные жирные кислоты и разнообразные изопреноиды (терпены, каротиноиды, стероиды). Таким образом, процессы брожения и дыхания приводят к образованию соединений, необходимых для синтеза жиров и других веществ.[16]

Роль витаминов и минеральных веществ

В превращениях веществ в организме важное место занимают витамины, вода и различные минеральные соединения. Витамины участвуют в многочисленных ферментативных реакциях в составе коферментов.

Производное витамина B1 — тиаминпирофосфат — служит коферментом при окислительном декарбоксилировании (a-кетокислот, в том числе пировиноградной кислоты). Фосфорнокислый эфир витамина B6 — пиридоксальфосфат — необходим для каталитического переаминирования, декарбоксилирования и др. реакций обмена аминокислот. Производное витамина А входит в состав зрительного пигмента. Разные виды организмов различаются как способностью к биосинтезу витаминов, так и своими потребностями в наборе тех или иных поступающих с пищей витаминов, которые необходимы для нормального обмен веществ

Важную роль в минеральном обмене играют Na, К, Ca, Р, а также микроэлементы и прочие неорганические вещества. Na и К участвуют в биоэлектрических и осмотических явлениях в клетках и тканях, в механизмах проницаемости биологических мембран; Ca и Р — основные компоненты костей и зубов; Fe входит в состав дыхательных пигментов — гемоглобина и миоглобина, а также ряда ферментов. Для активности последних необходимы и другие микроэлементы (Cu, Mn, Mo, Zn).

Решающую роль в энергетических механизмах обмена веществ играют эфиры фосфорной кислоты и, прежде всего, аденозинфосфорные кислоты, которые воспринимают и накапливают энергию, выделяющуюся в организме в процессах гликолиза, окисления, фотосинтеза. Эти и некоторые другие богатые энергией соединения передают заключенную в их химических связях энергию для использования ее в процессе механической, осмотической и прочих видов работ или же для осуществления синтетических реакций, идущих с потреблением энергии.

Регуляция обмена веществ

Удивительная согласованность и слаженность процессов обмена веществ в живом организме достигается путем строгой и пластичной координации обмена веществ как в клетках, так и в тканях и органах. Эта координация определяет для данного организма характер обмена веществ, сложившийся в процессе исторического развития, поддерживаемый и направляемый механизмами наследственности и взаимодействием организма с внешней средой.

Регуляция обмена веществ на клеточном уровне осуществляется путем регуляции синтеза и активности ферментов. Синтез каждого фермента определяется соответствующим геном. Различные промежуточные продукты обмена веществ, действуя на определенный участок молекулы ДНК, в котором заключена информация о синтезе данного фермента, могут индуцировать (запускать, усиливать) или, наоборот, репрессировать (прекращать) его синтез. Так, кишечная палочка при избытке изолейцина в питательной среде прекращает синтез этой аминокислоты. Избыток изолейцина действует двояким образом. Во-первых, угнетает (ингибирует) активность фермента треониндегидратазы, катализирующего первый этап цепи реакций, ведущих к синтезу изолейцина. Во-вторых, репрессирует синтез всех ферментов, необходимых для биосинтеза изолейцина (в том числе и треониндегидратазы). Ингибирование треониндегидратазы осуществляется по принципу аллостерической регуляции активности ферментов.

Информация о работе Объекты биотехнологии в пищевой промышленности