Основные свойства живых систем

Автор работы: Пользователь скрыл имя, 29 Августа 2013 в 22:07, лекция

Краткое описание

Единство химического состава. Хотя в состав живых систем входят те же химические элементы, что и в объекты неживой природы, соотношение различных элементов в живом и неживом неодинаково. В живых организмах – 98% химического состава приходится на шесть элементов: кислород (–62%), углерод (–20%), водород (–10%), азот (–3%), кальций (–2,5%), фосфор (–1,0%). Кроме того, живые системы содержат совокупность сложных полимеров, в основном белки, нуклеиновые кислоты, ферменты и т.д., которые неживым системам не присущи.

Вложенные файлы: 1 файл

№1.doc

— 119.00 Кб (Скачать файл)

Основные свойства живых систем  
 
1. Единство химического состава. Хотя в состав живых систем входят те же химические элементы, что и в объекты неживой природы, соотношение различных элементов в живом и неживом неодинаково. В живых организмах – 98% химического состава приходится на шесть элементов: кислород (–62%), углерод (–20%), водород (–10%), азот (–3%), кальций (–2,5%), фосфор (–1,0%). Кроме того, живые системы содержат совокупность сложных полимеров, в основном белки, нуклеиновые кислоты, ферменты и т.д., которые неживым системам не присущи.  
 
2. Открытость живых систем. Живые системы – открытые системы. Живые системы используют внешние источники энергии в виде пищи, света и т.п. Через них проходят потоки веществ и энергии, благодаря чему в системах осуществляется обмен веществ – метаболизм. Основа метаболизма – анаболизм (ассимиляция), то есть синтез веществ, и катаболизм (диссимиляция), то есть распад сложных веществ на простые с выделением энергии, которая используется для биосинтеза.  
 
3. Живые системы – самоуправляющиеся, саморегулирующиеся, самоорганизующиеся системы.  
 
Саморегуляция – свойство живых систем автоматически устанавливать и поддерживать на определенном уровне те или иные физиологические (или другие) показатели системы. Самоорганизация – свойство живой системы приспособляться к изменяющимся условиям за счет изменения структуры своей системы управления. При саморегуляции и самоорганизации управляющие факторы воздействуют на систему не извне, а возникают в ней самой в процессе переработки информации, которой живая система обменивается с внешней средой. Это означает, что живые системы – самоуправляющиеся системы.  
 
4. Живые системы – самовоспроизводящиеся системы. Живые системы существуют конечное время. Поддержание жизни связано с самовоспроизведением, благодаря чему живое существо воспроизводит себе подобных.  
 
5. Изменчивость живых систем. Изменчивость связана с приобретением организмом новых признаков и свойств. Это явление противоположно наследственности и играет роль в процессе отбора организмов, наиболее приспособленных к конкретным условиям.  
 
6. Способность к росту и развитию. Рост – увеличение в размерах и массе с сохранением общих черт строения; рост сопровождается развитием, то есть возникновением новых черт и качеств. Развитие может быть индивидуальным (онтогенез), когда последовательно проявляются все свойства организма, и историческим, которое сопровождается образованием новых видов и прогрессивным усложнением живой системы (филогенез).  
 
Онтогенез – индивидуальное развитие организма, охватывающее все изменения от момента зарождения до окончания жизни.  
 
Филогенез – историческое развитие организмов или эволюция органического мира.  
 
7. Раздражимость – неотъемлемая черта всего живого. Раздражимость связана с передачей информации из внешней среды к живой системе и проявляется в виде реакций системы на внешние воздействия.  
 
8. Целостность и дискретность. Живая система дискретна, так как состоит из отдельных, но взаимодействующих между собой частей, которые в свою очередь также являются живыми системами. Например: организм состоит из клеток, являющихся живыми системами; биоценоз состоит из совокупностей различных видов, которые также являются живыми системами.  
С дискретностью связаны различные уровни организации живых систем, о чем будет сказано ниже. Вместе с тем живая система целостна, поскольку входящие в нее элементы обеспечивают выполнение своих функций не самостоятельно, а во взаимосвязи с другими элементами системы.  
 
Специфика живого заключается в том, что ни один из перечисленных признаков (а их число составляет по данным разных ученых до 20-30) не является самым главным, определяющим для того, чтобы систему можно было назвать целостной живой системой. Только наличие всех этих признаков вместе взятых позволяет провести границу между живым и неживым в природе. Единственный способ дать определение живому – перечислить основные свойства живых систем.

Уровни организации жизни

Материал из Википедии — свободной  энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 июня 2013; проверки требуют 3 правки.

Перейти к: навигация, поиск

Уровни организации  живой материи — иерархически соподчинённые уровни организации биосистем, отражающие уровни их усложнения. Чаще всего выделяют шесть основных структурных уровней жизни: молекулярный, клеточный,органно-тканевой, организменный, популяционно-видовой, биогеоценотический и биосферный. В типичном случае каждый из этих уровней является системой из подсистем нижележащего уровня и подсистемой системы более высокого уровня. Следует подчеркнуть, что построение универсального списка уровней биосистем невозможно. Выделять отдельный уровень организации целесообразно в том случае, если на нём возникают новые свойства, отсутствующие у систем нижележащего уровня. К примеру, феномен жизни возникает на клеточном уровне, а потенциальное бессмертие — на популяционном[1]. При исследовании различных объектов или различных аспектов их функционирования могут выделяться разные наборы уровней организации. Например, у одноклеточных организмов механизмы регуляции изучаемого процесса. Одним из выводов, следующих из общей теории систем является то, что биосистемы разных уровней могут быть подобны в своих существенных свойствах, например, принципах регуляции важных для их существования параметров

Содержание

  • 1 Молекулярный уровень организации жизни
  • 2 Клеточный уровень организации жизни
  • 3 Тканевый уровень организации жизни
  • 4 Органный уровень организации жизни
  • 5 Организменный (онтогенетический) уровень организации жизни
  • 6 Популяционно-видовой уровень организации жизни
  • 7 Биогеоценотический уровень организации жизни
  • 8 Биосферный уровень организации жизни
  • 9 См. также
  • 10 Примечания
  • 11 Литература
  • 12 Ссылки

Молекулярный уровень организации жизни

Представлен разнообразными молекулами, находящимися в живой клетке.

  1. Компоненты
    • Молекулы неорганических и органических соединений
    • Молекулярные комплексы
  2. Основные процессы
    • Объединение молекул в особые комплексы
    • Осуществление, кодирование и передача генетической информации
  3. Науки, ведущие исследования на этом уровне
    • Биохимия
    • Биофизика
    • Молекулярная биология
    • Молекулярная генетика

Клеточный уровень организации жизни

Представлен свободно живущими одноклеточными организмами и клетками, входящими  в многоклеточные организмы.

  1. Компонент
    • Комплексы молекул химических соединений и органоиды клетки
  2. Основные процессы
    • Биосинтез, фотосинтез
    • Регуляция химических реакций
    • Деление клеток
    • Вовлечение химических элементов Земли и энергии Солнца в биосистемы
  3. Науки, ведущие исследования на этом уровне
    • Генная инженерия
    • Цитогенетика
    • Цитология
    • Эмбриология

Тканевый уровень организации жизни

Тканевый уровень представлен тканями, объединяющими клетки определённого строения, размеров, расположения и сходных функций. Ткани возникли в ходе исторического развития вместе с многоклеточностью. У многоклеточных организмов они образуются в процессе онтогенеза как следствие дифференцировки клеток. У животных различают несколько типов тканей (эпителиальная, соединительная, мышечная, нервная). У растений различают меристематическую, защитную, основную и проводящую ткани. На этом уровне происходит специализация клеток.

Органный уровень организации жизни

Органный уровень представлен  органами организмов. У простейших пищеварение, дыхание, циркуляция веществ, выделение, передвижение и размножение осуществляются за счёт различных органелл. У более совершенных организмов имеются системы органов. У растений и животных органы формируются за счёт разного количества тканей. Для позвоночных характерна цефализация, заключающаяся в сосредоточении важнейших центров и органов чувств в голове.

Организменный (онтогенетический) уровень организации жизни

Представлен одноклеточными и многоклеточными  организмами растений, животных, грибов и бактерий.

  1. Компоненты
    • Клетка — основной структурный компонент организма. Из клеток образованы ткани и органы многоклеточного организма
  2. Основные процессы
    • Обмен веществ (метаболизм)
    • Раздражимость
    • Размножение
    • Онтогенез
    • Нервно-гуморальная регуляция процессов жизнедеятельности
    • Гомеостаз
  3. Науки, ведущие исследования на этом уровне
    • Анатомия
    • Биология развития
    • Аутэкология
    • Генетика
    • Гигиена
    • Морфология
    • Физиология

Популяционно-видовой уровень организации жизни

Представлен в природе огромным разнообразием видов и их популяций.

  1. Компоненты
    • Группы родственных особей, объединённых определённым генофондом и специфическим взаимодействием с окружающей средой
  2. Основные процессы
    • Генетическое своеобразие
    • Взаимодействие между особями и популяциями
    • Накопление элементарных эволюционных преобразований
    • Осуществление микроэволюции и адаптация к изменяющейся среде
    • Видообразование
    • Увеличение биоразнообразия
  3. Науки, ведущие исследования на этом уровне
    • Генетика популяций
    • Эволюция
    • Экология

Биогеоценотический уровень организации жизни

Представлен разнообразием естественных и культурных биогеоценозов во всех средах жизни.

  1. Компоненты
    • Популяции различных видов
    • Факторы среды
    • Пищевые сети, потоки веществ и энергии
  2. Основные процессы
    • Биохимический круговорот веществ и поток энергии, поддерживающие жизнь
    • Подвижное равновесие между живыми организмами и абиотической средой (гомеостаз)
    • Обеспечение живых организмов условиями обитания и ресурсами (пищей и убежищем)
  3. Науки, ведущие исследования на этом уровне
    • Биогеография
    • Биогеоценология
    • Экология

Биосферный уровень организации жизни

Представлен высшей, глобальной формой организации биосистем — биосферой.

  1. Компоненты
    • Биогеоценозы
    • Антропогенное воздействие
  2. Основные процессы
    • Активное взаимодействие живого и неживого вещества планеты
    • Биологический глобальный круговорот веществ и энергии
    • Активное биогеохимическое участие человека во всех процессах биосферы, его хозяйственная и этнокультурная деятельность
  3. Науки, ведущие исследования на этом уровне
    • Экология
      • Глобальная экология
      • Космическая экология

 

 

План лекции:

По современным представлениям, жизнь - это способ существования  открытых коллоидных систем, обладающих свойствами саморегуляции, воспроизведения  и развития на основе геохимического взаимодействия белков, нуклеиновых кислот других соединений вследствие преобразования веществ и энергии из внешней среды.

Жизнь возникает и протекает  в виде высокоорганизованных  целостных  биологических систем. Биосистемами являются организмы,  их структурные  единицы (клетки, молекулы), виды, популяции, биогеоценозы и биосфера.

Живые системы обладают рядом общих  свойств и признаками, которые  отличают их от неживой природы.

1. Все биосистемы характеризуются  высокой упорядоченностью, которая  может поддерживаться только  благодаря протекающим в них процессам. В состав всех биосистем, лежащих выше молекулярного уровня, входят определенные  элементы (98% химического состава приходится  на 4 элемента: углерод, кислород, водород, азот, а в общей массе веществ основную долю составляет вода - не мене 70 – 85%). Упорядоченность клетки проявляется в том, что для нее характерен определенный набор клеточных компонентов, а упорядоченность биогеоценоза - в том, что в его состав входят определенные функциональные группы организмов и связанная с ними неживая среда.

2. Клеточное строение: Все живые  организмы имеют клеточное строение, за исключением вирусов. 

3. Метаболизм. Все живые организмы  способны к обмену веществ  с окружающей средой, поглощая  из нее вещества, необходимые  для питания и дыхания, и  выделяя продукты жизнедеятельности. Смысл биотических круговоротов заключается в преобразовании молекул, обеспечивающих постоянство внутренней среды организма и, таким образом, непрерывность его функционирования в постоянно меняющихся условиях внешней среды (поддержание гомеостаза) .

4. Репродукция, или самовоспроизведение, - способность живых систем воспроизводить  себе подобных. Этот процесс осуществляется  на всех уровнях организации  живого;

а) редупликация ДНК - на молекулярном уровне;

б) удвоение пластид, центриолей, митохондрий в клетке - на субклеточном уровне;

в) деление клетки путем митоза - на клеточном уровне;

г) поддержание постоянства клеточного состава за счет размножения отдельных  клеток - на тканевом уровне;

д) на организменном уровне репродукция  проявляется в виде бесполого размножения особей (увеличение численности потомства и преемственность поколений осуществляется за счет митотического деления соматических клеток) или полового (увеличение численности потомства и преемственность поколений обеспечиваются половыми клетками - гаметами).

Информация о работе Основные свойства живых систем