Історія відкриття та дослідження клітин

Автор работы: Пользователь скрыл имя, 22 Ноября 2013 в 15:17, реферат

Краткое описание

Кліти́на (від лат. cellula — комірка) — структурно-функціональна одиниця всіх живих організмів, для якої характерний власний метаболізм та здатність до відтворення. Від середовища, яке її оточує, клітина відмежована плазматичною мембраною (плазмалемою). Розрізняють два типи клітин: прокаріотичні, що не мають сформованого ядра, характерні для бактерій та архей, та еукаріотичні, в яких наявне ядро, властиві для всіх інших клітинних форм життя, зокрема рослин, грибів та тварин. До неклітинних форм життя належать лише віруси, але вони не мають власного метаболізму і не можуть розмножуватись поза межами клітин-живителів.

Вложенные файлы: 1 файл

1)Кліти́на.docx

— 437.62 Кб (Скачать файл)

Мікротрубочки, клітинний  центр та джгутики

Переріз через аксонеми джгутиків  хламідомонади (Chlamydomonas reinhardtii) (ТЕМ)

Мікротрубочки — це порожнисті циліндри діаметром 25 нм і довжиною 0,2—25 мкм, що складаються зі спірально  розташованих димерів білка тубуліну. Вони можуть збиратися або розбиратися в залежності від потреб клітини шляхом полімеризації або деполімеризації тубуліну на, відповідно, «+» та «-» кінцях. Мікротрубочки беруть участь у підтриманні форми клітини, зокрема запобігають її стисканню, у внутрішньоклітинному транспорті, а також забезпечують розходження хроматид (або хромосом) під час клітинного поділу.

У тваринній клітині під час інтерфази центром організації мікротрубочок є фібрилярне гало клітинного центру (центросоми), розташованого поблизу ядра. У клітинному центрі розташовані два короткі порожнисті циліндри (довжина 30—50 мкм, діаметр 20 мкм) — центріолі, що побудовані із дев'яти триплетів мікротрубочок, розміщених по колу і з'єднаних «ручками» з білка десміну. Перед клітинним поділом центріолі подвоюються, кожна пара розходиться до одного з полюсів клітини, де вони стають центрами організації для мікротрубочок веретена поділу. Клітинний центр і центріолі виявлено тільки у тваринних клітинах, у рослин та грибів їх функції мають виконувати інші структури.

Мікротрубочки також є  основними структурними елементами джгутиків та війок — органел руху, наявних переважно у тваринних клітин. Джгутики та війки ідентичні за будовою, але відрізняються довжиною, кількістю на одну клітину та характером руху. Обидва типи органел складаються із двох основних частин: базального тільця, розташованого всередині клітини та аксонеми — довгої нитки, вкритої плазматичною мембраною. Базальне тіло схоже за структурою до центріоль — складається із дев'яти триплетів мікротрубочок. Усередині аксонеми також розташовані мікротрубочки, але іншим чином: дев'ять пар утворюють циліндр, усередині якого розміщена ще одна пара (принцип розміщення «9+2»). У русі джгутиків та війок беруть участь моторні білки динеїни.

Актинові філаменти

Мікрофіламенти фібробластів мишачого ембріона (зафарбовані флуоресцеїн  ізотіоціанат-фалоїдином)

Актинові філаменти (мікрофіламенти) — нитки діаметром 7 нм, що складаються  із глобулярного білка актину. Ці елементи цитоскелету можуть утворювати розгалужені сітки. На відміну, від мікротрубочок, які забезпечують стійкість клітини до стискання, мікрофіламенти протистоять її розтягуванню. Сітка із актинових філаментів, розташована відразу ж під плазматичною мембраною — кортикальні мікрофіламенти — підтримують форму клітини, зокрема утворюють серцевину мікроворсинок.

Мікрофіламенти разом  із міозиновими філаментами забезпечують м'язові скорочення, амебоїдний рух  за допомогою псевдоподій, а також  постійний рух цитоплазми по колу (циклоз) у рослинних клітинах.

Проміжні філаменти

Проміжні філаменти —  це клас елементів цитоскелету, що мають  діаметр 8—12 нм (тобто, вони тонші за мікротрубочки і товстіші за мікрофіламенти, за що й отримали свою назву). Побудовані переважно з різних білків родини кератинів. Вони є стабільнішими структурами, ніж мікротрубочки та актинові філаменти, які постійно збираються і розбираються, і залишаються в клітині навіть після її загибелі, наприклад, у мертвих клітинах верхніх шарів епідерми шкіри. Проміжні філаменти дуже важливі у підтриманні клітинної форми, зокрема, вони утворюють каркас довгих відростків, таких як аксони нейронів. Також проміжні філаменти фіксують положення деяких клітинних структур, наприклад ядра, і формують ядерну пластинку (ламіну.

Клітинні включення

Гранули крохмалю у клітинах бульби картоплі (СЕМ)

Клітинні включення —  це гранули, краплі або кристали певних речовин, що накопичуються у цитоплазмі клітини. На відміну від органел вони є непостійними і необов'язковими структурами. Найчастіше у формі включень організми запасають поживні речовини, наприклад, краплі жиру в адипоцитах, гранули глікогену в клітинах печінки та крохмалю в багатьох рослинних клітинах. Також включеннями можуть бути пігменти або продукти обміну (наприклад кристали оксалату кальцію у листках буряка, шпинату, щавлю кислого.

Клітинна стінка

Структура клітинної стінки рослинної клітини

Клітинна стінка — це надмембранна структура клітин рослин, грибів (а також і прокаріот), проте її немає у тварин. Клітинна стінка потрібна для підтримання форми, захисту клітини та запобігання надмірного надходження до неї води. У грибів клітинна стінка складається в основному з хітину, а в рослин — із фібрил целюлози та геміцелюлоз, занурених у матрикс із пектинів.

Молода рослинна клітина  утворює тонку гнучку первинну клітинну стінку (товщиною близько 0,1 мкм). Між клітинними стінками двох сусідніх клітин розміщується серединна пластинка, що складається в основному із пектинів, які «склеюють» клітини між собою. Після того як рослинна клітина перестає рости, вона укріплює свою клітинну стінку, відкладаючи додаткові шари целюлози. У певних тканинах (наприклад провідних та опорних) клітини утворюють досить товсту вторинну клітинну стінку, що може складатись з інших речовин — наприклад лігніну в деревині або суберину у корку.

Міжклітинні контакти

У вищих тварин та рослин клітини об'єднано в тканини і  органи, у складі яких вони взаємодіють між собою, зокрема, завдяки прямим фізичним контактам. У рослинних тканинах окремі клітини поєднано між собою за допомогою плазмодесм, а тваринні утворюють різні типи клітинних контактів.

Плазмодесми рослин — це тонкі цитоплазматичні канали, що проходять через клітинні стінки сусідніх клітин, сполучаючи їх між собою. Порожнина плазмодесм вистелена плазмалемою. Сукупність всіх клітин, об'єднаних плазмодесмами називається симпластом, між ними можливий регульований транспорт речовин.

Міжклітинні контакти хребетних  тварин на основі будови і функцій  поділяють на три основні типи: якірні (англ. anchoring junctions), що включають  адгезивні контакти та десмосоми, щільні або ізоляційні (англ. tight junction) та щілинні  або комунікаційні (англ. gap junction). Окрім того деякі особливі види сполучень між клітинами, такі як хімічні синапси нервової системи та імунологічні синапси (між T-лімфоцитами та антигенпрезентуючими клітинами), об'єднують за функціональною ознакою в окрему групу: контакти, що передають сигнали, (англ. signal-relaying junction). Проте в міжклітинному сигналюванні можуть брати участь і якірні, щілинні та щільні контакти.

Клітинний цикл

Мітоз клітини миші на стадії телофази: веретено поділу (мікротрубочки) зафарбовані оранжевим, актинові філаменти — зеленим, хроматин — блакитним

Клітинний цикл — це серія  подій, що відбувається у період від утворення еукаріотичної клітини до завершення її поділу. Клітинні поділи необхідні як утворення тіла багатоклітинних організмів, так і для відтворення собі подібних. Перед поділом генетичний матеріал має бути репліковано, щоб кожна з нових клітин отримала його копію, ідентичну до материнської.

Середня тривалість клітинного циклу еукаріотичної клітини за сприятливих умов і наявності стимулів до поділу може становити 24 год. Він складається із таких фаз:

Інтерфаза — період, в  який клітина не ділиться; триває 90% часу клітинного циклу і в свою чергу поділяться на три фази:

Фаза G1 (англ. first gap) — пресинтетичний період, клітина росте, накопичує поживні речовини, виконує свої основні функції (5—6 год або більше залежно від типу клітин та умов).

Фаза S — синтетичний період, відбувається реплікація ДНК, продовжується  ріст клітини (10—12 год для людської клітини).

Фаза G2 (англ. second gap) — постсинтетичний  період, клітина готується до поділу — перевіряє, чи добре скопійовано ДНК, накопичує білки необхідні для утворення веретена поділу, подвоюються деякі органели (4—6 год для типової людської клітини).

Клітинний поділ — триває не більше години і поділяється на два взаємопов'язані етапи:

Мітоз — поділ ядра, під час якого відбувається рівномірний розподіл генетичної інформації. Відбувається у кілька етапів: профаза, прометафаза, метафаза, анафаза і телофаза. Під час мітозу спіралозвані хромосоми, що складаються із двох ідентичних хроматид вишиковуються по екватору веретена поділу, а потім окремі хроматиди, за допомогою мікротрубочок, розходяться до його полюсів. На кожному полюсі формується нове ядро.

Цитокінез — поділ цитоплазми клітини, у тварин відбувається за участі скоротливого кільця із актинових та міозинових філамтенів, а у вищих  рослин — за допомогою спеціальної  структури — фрагмопласту, що складається  із мікротрубочок веретена поділу і  везикул апарату Гольджі, які, зливаючись між собою, відокремлюють дві дочірні клітини.

Окрім мітозу існує ще один спосіб поділу ядра еукаріотичної клітини — мейоз, це серія із двох поділів, між якими часто немає інтерфази. На противагу мітозу, після завершенню мейозу кожна дочірня клітина отримує лише половину генетичної інформації батьківської клітини. Мейоз обов'язково відбувається на певному етапі життєвого циклу всіх організмів, здатних до статевого розмноження. Він необхідний для підтримання сталої кількості хромосом у всіх особин виду і для здійснення генетичної рекомбінації — перегрупування та перерозподілу генів.

У багатоклітинних організмів частина диференційованих клітин виходять із клітинного циклу: після стадії G1 вони переходять у стадію спокою — G0, більшість таких клітин за певних умов можуть відновлювати проліферацію.

Усі події у клітинному циклі чітко регулюються системою спеціальних білків циклінів та циклін-залежних кіназ, яка тісно пов'язана з іншими сигнальними шляхами клітини. Якщо один або кілька елементів цієї системи виходять із ладу, це може призвести до неконтрольованого поділу клітин і утворення пухлин, зокрема, злоякісних[83].

Диференціація клітин багатоклітинного організму

Багатоклітинні організми  складаються із клітин, що тією чи іншою  мірою відрізняються за будовою і функціями, наприклад у дорослої людини близько 230 різних типів клітин. Всі вони є нащадками однієї — зиготи (у випадку статевого розмноження) — і набувають відмінностей внаслідок процесу диференціації. Диференціація у переважній більшості випадків не супроводжується зміною спадкової інформації клітини, а забезпечується лише шляхом регулювання активності генів, специфічний характер експресії генів успадковується під час поділу материнської клітини зазвичай завдяки епігенетичним механізмам. Проте є винятки: наприклад, при утворенні клітин специфічної імунної системи хребетних відбувається перебудовування деяких генів, еритроцити ссавців повністю втрачають всю спадкову інформацію, а статеві клітини — її половину.

Відмінності між клітинами  на перших етапах ембріонального розвитку з'являються, по-перше, внаслідок неоднорідності цитоплазми заплідненої яйцеклітини, через яку під час процесу дроблення утворюються клітини, що різняться за вмістом певних білків та РНК, по-друге, важливу роль відіграє мікрооточення клітини — її контакти з іншими клітинами та середовищем.

Диференціюючись, клітини  втрачають свої потенції, тобто здатність  давати початок клітинам інших типів. Із тотипотентих клітин, до яких належить зокрема зигота, може утворитись цілісний організм. Плюрипотентні клітини (наприклад  клітини бластоцисти) мають можливість диференціюватись у будь-який тип  клітин організму, але з них не можуть розвинутись позазародкові  тканини, а отже і нова особина. Клітини, які здатні дати початок тільки обмеженій кількості інших тканин називаються мультипотентними (стовбурові клітини дорослої людини), а ті, які можуть відтворювати тільки собі подібні — уніпотентними. Багато із остаточно диференційованих клітин (наприклад нейрони, еритроцити) повністю втрачають здатність до поділу і виходять з клітинного циклу.

У деяких випадках диференціація  може бути зворотною, протилежний до неї процес називається дедиференціація. Він характерний для регенерації, але інколи може відбуватись патологічно, як етап злоякісної трансформації клітини.

Клітинна смерть

Одноклітинні організми  в деякому сенсі можна вважати  «безсмертними», оскільки, за винятком випадків ушкодження чи голодування, вони не вмирають, а проходять поділ, внаслідок якого утворюється два нових організми. Натомість всі клітини багатоклітинних організмів (крім гамет) приречені на загибель, проте помирають вони не лише в разі смерті всієї особини — цей процес відбувається постійно.

Смерть деяких клітин необхідна  під час ембріонального розвитку, клітини продовжують помирати і в дорослих організмах, наприклад в кістковому мозку та кишківнику людини щогодини гинуть мільярди клітин. За фізіологічних умов відбувається «запрограмована клітинна смерть», іншими словами клітини «чинять суїцид». Найбільш поширеним, проте не єдиним, шляхом клітинного суїциду є апоптоз. Основні ознаки апоптозу: фрагментація ДНК, розпад клітини на апоптичні тільця — везикули оточені мембранами. На їх поверхні розташовані особливі молекули, що спонукають сусідні клітини та макрофаги фагоцитувати їх, таким чином, що процес не супроводжується запаленням. Апоптоз є енергозалежним процесом і потребує використання АТФ. Цей шлях клітинної смерті важливий не лише для розвитку організму, нормального функціонування імунної системи, а й для захисту особини від ушкоджених клітин, що можуть стати на шлях злоякісної трансформації, та від вірусних інфекцій.

Фізичне чи хімічне пошкодження клітин, а також нестача джерел енергії та кисню, може призвести до іншої смерті — некротичної. Некроз, на відміну від апоптозу, — пасивний процес, він часто супроводжується розривом плазмалеми і витіканням цитоплазми. Некроз майже завжди викликає запалення навколишніх тканин. Останнім часом досліджується механізм запрограмованого некрозу, як можливого противірусного і протипухлинного захисту.

За умов тривалої нестачі  АТФ у клітині, вона не відразу  гине шляхом некрозу, а в багатьох випадках стає на шлях автофагії —  процесу, що дозволяє їй ще деякий час залишатись життєздатною. Автофагагія — це буквально самопоїдання: обмін речовин перемикається у бік активного катаболізму, при цьому окремі органели оточуються подвійними мембранами, утворюються так звані автофагосоми, що зливаються із лізосомами, де відбувається перетравлення органічних речовин. Якщо голодування продовжується і після того, як більшість органел вже «з'їдено», клітина гине шляхом некрозу. Деякі автори вважають, що за певних умов, автофагія може бути окремим типом клітинної смерті.

Информация о работе Історія відкриття та дослідження клітин