Автор работы: Пользователь скрыл имя, 09 Октября 2013 в 11:58, курсовая работа
Флавоноидами называется группа фенольных соединений с двумя ароматическими кольцами, объединенных общим структурным составом С6-С3-С6. Первое бензольное кольцо, конденсированное в большинстве классов с кислородосодержащим гетероциклом С или непосредственно прилежащее к карбонильной группе пропанового фрагмента, как в халконах, обозначают буквой А, а боковой фенильный заместитель - буквой В латинского алфавита. Исходя из такого обозначения, порядок нумерации в гетероциклических флавоноидах начинается с гетероатома с переходом на кольцо А, а в кольце В порядок нумерации автономный и начинается с углерода, связанного с остальной частью молекулы
I. Введение 3
II.Классификация 4
III. Физико-химические свойства. 10
IV. Биогенетические предшественники, пути биогенеза……………………...11
V. Распространение в растительном мире. 14
VI. Локализация по органам и тканям. 14
VII. Роль флавоноидов в жизнедеятельности растительного организма. 16
VIII. Влияние онтогенетических факторов и условий среды на накопление флавоноидов в растениях. 17
IX. Сбор, сушка и хранение ЛРС, содержащего флавоноиды. 17
X. Методы выделения. 18
XI. Методы анализа. 21
XII. Лекарственные растения и ЛРС…………………………………………...25
XIII. Применение флавоноидов в медецине и других отрослях народного хозяйства. 33
XIV. Заключение. 38
Литература
В большинстве плодов основной их окраски являются также антоцианы. Широко распространены и флавоноловые гликозиды. В листьях главными являются флавоноловые гликозиды, а антоцианов в них сравнительно мало. В семенах флавоноиды могут находиться как в свободном, так и в связанном состоянии. Например, это может относиться к флавонолу кверцетину. Функция флавоноидов в семенах неясна. Высказано предположение, что они могут быть ингибиторами прорастания [5].
Биологическая роль флавоноидов в жизни растений изучена еще недостаточно.
Некоторые авторы считают, что флавоноиды принимают участие:
• в окислительно-
• в выработке иммунитета;
• в защите растений от
неблагоприятных воздействий
• в процессе оплодотворения высших растений;
• обуславливают огромное разнообразие окрасок цветков и плодов, что привлекает насекомых и тем самым способствуют опылению;
• некоторые флавоноиды защищают аскорбиновую кислоту от окисления (т.е. являются антиоксидантами).
Сбор сырья проводится в фазу наибольшего накопления флавоноидов. Заготовку надземных частей проводят в фазу бутонизации или начала цветения, подземных – в конце вегетации [2]. В фазу цветения собирают цветки василька синего, пижмы, бессмертника, траву сушеницы, горцев, пустырника. Особенностью сбора сушеницы является выдергивание растения с корнем. Пустырник собирают при цветении нижних цветков. В фазе полного цветения наступает "перезревание", чашечка твердеет и становится колючей, а сырье считается некачественным. Траву череды собирают в период бутонизации. После цветения образуются плоды - семянки с колючими остями. Сбор дикорастущего сырья производят вручную с использованием ножей, ножниц и серпов. Для сбора культивированных растений (цветки бессмертника, плоды боярышника) применяют малую механизацию [7].
Сырье необходимо сушить вскоре после сбора, т.к. флавоноидные гликозиды под влиянием ферментов в присутствии влаги легко гидролизуются на сахар и агликон, а свободные агликоны могут окисляться.
Сушить сырье следует в тени или в сушилках с искусственным и естественным обогревом. Плоды сушат при температуре 70-90°С, траву - 50-60°С; цветки - 40°С. Не допускается сушка на солнце. Медленная сушка, особенно на солнце, ведет к разрушению флавоноидов.
Сырье необходимо оберегать от влаги и прямых солнечных лучей. Сохранять в плотно укупоренной таре, в хорошо проветриваемом помещении [2].
Для флавоноидов, как и для других веществ, не существует способа выделения, универсального для всех растительных материалов. В каждом конкретном случае прибегают к наиболее подходящему методу или сочетанию методов, с учётом в основном свойств веществ и особенностей растительного сырья. Наиболее часто используются избирательная экстракция, осаждение с помощью солей тяжёлых металлов и хроматографические методы [5].
Для выделения флавоноидов из растительного сырья в качестве экстрагента чаще всего используют метиловый или этиловый спирты или их смеси с водой.
Полученное спиртовое извлечение упаривают (упаривание проводят в вакууме при возможно низкой температуре (50-70º)), разбавляют горячей водой и удаляют липофильные вещества (жирные масла, смолы, хлорофилл) из водной фазы делительной воронки дихлорэтаном или четыреххлористым углеродом. После этой очистки агликоны извлекают этиловым эфиром, монозиды (в основном) этилацетатом и биозиды, триозиды – н- бутанолом, насыщенным водой.
Компоненты каждой фракции разделяют, используя колоночную хроматографию, с применением в качестве сорбента полиамида, силикагеля или целлюлозы. Элюирование веществ с колонки (агликоны) проводят смесью хлороформа с метанолом или этанолом с возрастающей концентрацией спиртов или спиртоводными смесями (гликозиды), начиная с воды и увеличивая концентрацию спирта [6].
Для отделения и очистки многих флавоноидов иногда используют их способность образовывать нерастворимые в воде и спирте соли при взаимодействии с ионами тяжелых металлов, а также влияние рН на образование таких осадков. Флавоноиды, содержащие свободные орто-гидроксильные группы в кольце В, при обработке их спиртовых растворов солями среднего или основного ацетата свинца образуют осадки, окрашенные в ярко-желтый и красный цвета. Осадки затем центрифугируют и после суспендирования в разбавленных спиртах разлагают с помощью сероводорода. Далее флавоноиды отделяют либо путем перекристаллизации, либо хроматографическими методами [5].
Для идентификации флавоноидов
используют их физико-химические свойства:
определение температуры
Для обнаружения флавоноидов в ЛРС используют химические реакции и хроматографию. Химические реакции подразделяются на цветные и реакции осаждения.
1.Цианидиновая проба.
Общей реакцией на флавоноидные
соединения является цианидиновая проба,
проводимая с помощью концентрированной
соляной кислоты и
Изменение условий восстановления путем замены магния на цинк приводит к изменению окраски. При использовании цинка положительную реакцию дают флавонолы и флавонол-3-гликозиды, а флаваноны не обнаруживают ее.
Цианидиновую реакцию
не обнаруживают халконы, ауроны, но при
добавлении концентрированной соляной кисл
Для постановки реакции 1 г порошка сырья заливают 10 мл 95% этанола, нагревают на водяной бане до кипения и настаивают 3-4 ч. Спиртовое извлечение фильтруют, упаривают до объема 2 мл, делят пополам и разливают в 2 пробирки; в каждую пробирку прибавляют по 3 капли концентрированной хлористоводородной кислоты. В 1-ю пробирку добавляют 0,03-0,05 г цинковой пыли и нагревают на водяной бане до кипения. Жидкость окрашивается в красный цвет. Во 2-й пробирке окрашивание отсутствует [7].
2. Борно-лимонная реакция (реакция Вильсона- Таубека).
5-оксифлавоны и 5-
3. Реакция с треххлористой сурьмой.
5-оксифлавоны и 5-
4. Характерной реакцией на флавоноиды является их взаимодействие со щелочами с образованием желтой окраски. Халконы и ауроны дают со щелочами красное или ярко-желтое окрашивание, антоцианидины-синее окрашивание.
5. Флавоноиды со свободной 7-оксигруппой легко образуют азо-красители с диазотированной сулъфаниловой кислотой и другими производными ароматических аминов [6]. Появление тотчас же оранжево-красной окраски в видимом свете указывает на присутствие 7-оксифлавонов, 7-оксифлавонолов, 7-оксиизофлавонов. Появление окраски через 1-2 минуты, подтверждает наличие 7-оксифлавононов [5].
6. Ряд флавоноидов дает окрашенные комплексы с ионами алюминия, циркония, окрашенные, как правило, в УФ-свете в ярко-желтый цвет, что используется при их хроматографическом обнаружении.
7. Как все фенольные соединения, флавоноиды взаимодействуют с хлоридом окисного железа с образованием различно окрашенных комплексов (от зеленого до коричневого). Реакция мало специфична [6].
Все флавоноиды с основным ацетатом свинца образуют осадки, окрашенные в ярко-жёлтый или красный цвет.
Средним ацетатом свинца
осаждаются лишь флавоноид, содержащие
свободные орто-гидроксильные
Для обнаружения флавоноидов в растительном материале широко используется бумажная и тонкослойная хроматография. Флавоноиды идеально подходят для хроматографического анализа благодаря их различной растворимости, сорбционной способности, а также характерным окраскам самих веществ в видимом и фильтрованном ультрафиолетовом свете до и после проявления различными хромогенными реагентами. Обнаружение флавоноидов на хроматограммах проводят:
• по окраске пятен в видимом свете (антоцианы);
• по характеру свечения в УФ-свете: флавоны, флавонол-3-О-гликозиды, флаваноны и халконы обнаруживаются в виде темно-коричневых пятен, флавонолы и их 7-О-гликозиды – в виде желтых или желто-зеленых;
• по характеру свечения в УФ-свете после проявления 5%-ным спиртовым раствором хлорида алюминия и последующего прогревания хроматограммы при 105°С в течение 2-3 мин, наблюдают пятна флавоноидов с интенсивной желтой и желто-зеленой флуоресценцией [2].
Для количественного
определения флавоноидов в
1. Фотоколориметрический метод основан:
• на цветных реакциях комплексообразования с солями различных металлов (алюминия, циркония, хрома, сурьмы);
• на реакции с лимонно-борным реактивом;
• на реакции восстановления атомарным водородом в кислой
среде в присутствии металлического магния или цинка.
2. Спектрофотометрический метод, основанный на способности флавоноидов поглощать свет в УФ-области спектра.
3. Хромато-спектрофотометрический метод - более совершенный метод количественного определения флавоноидов, используется в сочетании с хроматографией, что позволяет произвести очистку и разделение суммы веществ на отдельные компоненты.
Реже используют:
4. Флюориметрический метод.
5. Полярографический метод.
6. Наличие фенольных
гидроксилов, обуславливающих
диметилформамиде, диметилсульфоксиде, ацетоне [2].
Боярышник кроваво-красный.
Flores Crategi
Fructus Crategi
Crategus sanguinea
Сем. Rosaceae.
Кустарник или деревце с прямыми твердыми колючками 4-5 см, с пурпурной корой.
Листья очередные с прилистниками, обратнояйцевидные или ромбические, как правило, с клиновидным основанием и острой верхушкой. Листовая пластинка 3,5-лопастная или с крупнозубчатым краем. Поверхность листа сверху и снизу опушена.
Информация о работе Флавоноиды – биологически активные соединения лекарственных растений