Современное состояния подземного оледенения Сибири

Автор работы: Пользователь скрыл имя, 27 Июня 2014 в 03:15, курсовая работа

Краткое описание

Геологическая деятельность ледников последнего глобального похолодания, начавшегося примерно 100000 лет назад и сменившего умеренный климат земского межледниковья, оказала колоссальное влияние на строение верхней части осадочных бассейнов, рельеф, миграцию флоры и фауны, расселение человека, распределение подземных вод и углеводородов и многие другие ныне существующие элементы природной среды северных материковых окраин. Реконструкции ледниковых систем прошлого совершенно необходимы в качестве граничных условий в компьютерных моделях глобального климата (GCM), направленных на предсказание изменений окружающей среды, включая столь мобильные ее компоненты как уровень океана, температура воздуха, содержание парниковых газов в атмосфере и состояние вечной мерзлоты.

Содержание

Введение
Глава I. Понятие вечной мерзлоты.
1.Мерзлотоведение как наука
2.Распространение вечной мерзлоты
3.Закономерности и факторы формировании вечной мерзлоты
Глава II. Многолетняя мерзлота Сибири.
1.Западная Сибирь
2.Средняя Сибирь
3.Северо - Восточная Сибирь
Заключение
Список литературы

Вложенные файлы: 1 файл

Курсовая.docx

— 40.78 Кб (Скачать файл)

Отепляющее влияние снежного покрова различно при разной континентальности климата. Чем больше амплитуда температур воздуха, тем больше, при прочих равных условиях, отепляющее влияние снежного покрова. При одной и той же мощности и плотности снежного покрова и при одинаковой средней годовой температуре воздуха в условиях континентального климата средняя годовая температура земной коры будет выше, чем в условиях морского климата. Поэтому утепляющее влияние снежного покрова можно рассматривать только в зависимости от континентальности климата. В связи с этим для повышения средней годовой температуры горных пород на 1 градус требуется различное приращение снежного покрова.

Снег, утепляя почву и подстилающие горные породы, приводит к сокращению годовой среднемесячной амплитуды температур в земной коре.

Снежный покров действует не только как теплоизолятор. Вместе с тем он отражает и поглощает лучистую энергию. Зимой снег отражает значительную часть падающей на него солнечной энергии и задерживает излучение из земной коры в атмосферу, а весной значительное количество солнечной энергии расходуется на его таяние. В этом случае снег является фактором, охлаждающим почву и горные породы.

В полярных районах происходит испарение снега при отрицательной температуре воздуха, поэтому мощность его к моменту установления положительных температур воздуха сильно сокращается, и на таяние поэтому затрачивается относительное меньшее количество солнечной энергии; однако, как отмечает В.А. Кудрявцев, охлаждающее воздействие снега на почву сказывается значительно раньше наступления положительных температур воздуха.

На юге, где мощность снежного покрова измеряется несколькими см, его теплоизолирующая роль мала и ею можно пренебречь. Наибольшее значение здесь имеет отражение лучистой энергии от белой поверхности снега. Снег в этом случае охлаждает горные породы и средние годовые температуры их поэтому ниже средней годовой температуры воздуха.

Снежный покров во многом определяет глубину сезонного промерзания почвы. На оголенных участках эта глубина иногда на 50-60% больше, чем на участках с естественным снежным покровом. Снежный покров уменьшает глубину сезонного промерзания почвы как за счет повышения ее средних годовых температур, так и за счет сокращения амплитуд.

Для сезонного протаивания отмечается иная закономерность. Отсутствие снежного покрова уменьшает глубину сезонного протаивания почвы за счет понижения зимних температур и увеличивает ее за счет увеличения амплитуд. Происходит взаимная компенсация и общее суммарное влияние снежного покрова оказывается незначительным.

Рельеф является существенным фактором формирования температурного режима горных пород. С повышением местности на 100 м температура горных пород понижается на 0, 5 градусов. Изменение с высотой амплитуд температур воздуха и снежного покрова, а также температурная инверсия усложняют эту зависимость и влияют на изменение вертикального температурного градиента почвы. За счет изменения отметки местности температуры почв и горных пород могут изменяться на 10-20 и более градусов (Кудрявцев, 1959).

Рельеф влияет на температуру земной коры через неравномерное распределение снежного покрова; выпуклые формы рельефа имеют маломощный снежный покров или вовсе лишены его, а отрицательные формы являются местами скопления часть очень мощного снега. В результате сравнительно высокая температура почвы наблюдается в отрицательных формах рельефа и более низкая – на положительных. Крупные формы рельефа оказывают влияние на температуру горных пород на значительных пространствах и на сравнительно большую глубину; влияние микрорельефа ограничено незначительными участками и малой глубиной.

Растительный покров существенно влияет на теплообмен между литосферой и атмосферой и во многом определяет температуры горных пород. Он изменяет количество поглощенной и отраженной лучистой энергии, защищает поверхность почвы от влияния ветров и, наконец, в значительной степени определяет влагообмен между воздухом и почвой. Поглощение растительностью воды и транспирация, выпадение на растениях росы, уменьшение испарение с покрытой растениями поверхности земли – все это оказывается значительное влияние на теплооборот верхних слоев горных пород.

Предохраняя почву от зимнего охлаждения и летнего прогревания, растительный покров сокращает амплитуды температур в ней. На юге сокращение летних амплитуд будет больше сокращения зимних, поэтому растительный покров на юге будет оказывать преимущественно охлаждающее действие на почву, а на севере, наоборот, утепляющее.

Роль мохового покрова в формировании температурного режима почвы определяется малой его теплопроводностью, гигроскопичностью и высокой влажностью.

Под мхом в грунтах имеет место резкое сокращение амплитуд колебания температуры. Зимой теплопроводность мерзлого мха резко возрастает. Вызванное этим понижение температуры почвы обусловливает понижение средних годовых ее температур на 1-3 градуса. Для районов с мощным снежным покровом отмечается обратная закономерность. Сокращение годовых амплитуд за счет мохового покрова достигает 60% , а при мощном мхе – 80%.

Важное значение имеются также влажность и льдистость грунтов, заметно изменяющие их теплофизические свойства, а так же фильтрационная способность грунтов. Инфильтрация вод в горные породы обеспечивает значительное их утепление.

При отсутствии заметной инфильтрации поверхностных вод в горные породы, местное отклонение средних годовых температур, обусловленные литологией и влажностью грунтов, может достигать 1-2 градуса. Если температуры в супесчаных грунтах принять за средние, то в суглинках, глинах и торфе они будут 0,5 – 1 градус ниже, а в песках и гравийно-галечниковых грунтах – на 0,5 – 1 градус выше.

Засоленность горных пород способствует понижению температуры вечномерзлых горных пород. Засоленные горные породы представляют собой солеохладительные смеси. Температуры в земной коре под влиянием засоления понижаются на 1-2 градуса и даже на 4-5 градусов (Кудрявцев, 1954).

Засоленные горные породы представляют собой солеохладительные смеси. Температуры в земной коре под влиянием засоления понижаются на 1-2 градуса и даже на 4-5 градусов (Кудрявцев, 1954).

На болотах температура грунтов часто на 0,5 – 1 градус ниже, чем на сухих и дренированных участках. Подобная закономерность наблюдается в районах с малой мощностью снежного покрова. В районах с мощным снежным покровом наблюдается обратная закономерность: на заболоченных участках температура выше, чем на дренированных.

Летом большое количество тепла на болотах тратится на испарение. По этой причине прогревание почвы и грунтов летом уменьшается и их температура понижается. Зимой, при малом снежном покрове, расходы тепла настолько велики, что замерзает сильно увлажненная почва и сильно охлаждаются нижележащие породы. При мощном снежном покрове зимняя теплоотдача земной коры затрудняется, вследствие чего происходит только частичное промерзание сильно увлажненной почвы. Летом этот небольшой промерзший слой быстро протаивает и почва нагревается больше, чем на дренированных участках.

Поверхностные водотоки, крупные и средние, являются одним из наиболее мощных отепляющих факторов, резко изменяющих температурный режим горных пород в сторону повышения температур. Мелкие водотоки, в отличие от больших и средних рек, действуют охлаждающе на подрусловые вечномерзлые горные породы. Это явление наблюдается или вблизи истоков мелкие рек или на участках интенсивного меандрирования их в пределах развития суглинистых пород и объясняется следующим. Суглинистые грунты препятствуют инфильтрации воды в прирусловый горизонт, вследствие чего летние осадки стекают по поверхности, не успев отдать свое тепло земной коре. Область питании таких водотоков находится в пределах сплошного распространения вечной мерзлоты, т.е. приходится на районы с малым количеством осадков. Поэтому здесь сток осуществляется преимущественно за счет вод слоя летнего оттаивания. Вследствие этого температура воды в верховьях мелких речек близка к 0 градусов. Повышение температуры происходит лишь значительно ниже по течению таких речек.

Присутствие или отсутствие вечной мерзлоты и температурный режим под озерами зависит от их глубины и размеров в плане. При небольшой глубине озер вечная мерзлота под ними может быть, а может и отсутствовать. Дно глубоких озер, как правило, находится в талом состоянии. При этом чаще всего имеется сквозной талик, но иногда и псведоталик.

Если ширина озера меньше, чем мощность вечномерзлой толщи, то под озером, по мнению В.А. Кудрявцева, образуется псевдоталик, подстилаемый вечной мерзлотой, что связано с боковым охлаждением. В том случае, когда ширина озера больше мощности вечной мерзлоты, то под ним имеется сквозной талик.

Глубина сезонного промерзания и протаивания горных пород под озерами и озерных осадков обусловлена влиянием вод водоема, определяющих характер средних годовых температур и температурных амплитуд. Кудрявцев считает, что сезонное промерзание и протаивание донных отложений может быть только в том случае, когда глубина водоема меньше глубины сезонного промерзания открытых водоемов. Так как в самых суровых условиях последняя не превышает 2-2,5 м, то, следовательно, сезонное промерзание может происходить только под озерами, глубиной до 2,5 м, а обычно значительно меньше. При столь малых глубинах температуры воды летом практически одинакова для все слоя.

В области вечной мерзлоты при непрерывном увеличении глубины озера деятельный слой над вечной мерзлотой будет сначала увеличиваться, а затем, достигнув максимума, при средней годовой температуре, равной 0 градусам, превратится в деятельный слой над талым субстратом, мощность которого должна постепенно сокращаться. При высыхании водоема идет обратный процесс, т.е. происходит увеличение глубины деятельного слоя над талым субстратом с последующим превращением его в деятельный слой над вечной мерзлотой при средней годовой температуре, равной 0 градусам.

Морские побережья рассматриваются как особый фактор на формирование температурного режима вечномерзлой толщи. На побережьях северных морей этот режим обусловлен взаимодействием подземных вод с минерализованной морской водой. Морская вода, температура замерзания которой ниже 0, остается зимой жидкой и при отрицательной температуре, циркулируя по трещинам в вечномерзлой толще. Летом же морская вода с положительной температурой, проникая в вечномерзлую толщу, утепляет ее. Динамика солевого состава вод, периодическое выпадение солей и их растворение, сопровождающее выделением и поглощение тепла, также влияют на тепловой режим горных пород. Вследствие этого отклонения температур верхних горизонтов вечномерзлой толщи от типичных на морских побережьях могут достигать значительных величин.

Большое влияние на температурный режим грунтов оказывают подземные воды, грунтовые и артезианские, особенно термальные. Быстро циркулирующие грунтовые воды сильно отепляют вечномерзлую толщу и часть являются причиной ее уничтожения.

Геохимические процессы в земной коре могут приводить к повышению температуры вечномерзлой толщи. К подобному эффекту приводит, например, процесс окисления пирита.

Обычная схема окисления сульфидных руд и образование так называемой «железной шляпы», как указывается Кудрявцевым, в условиях вечной мерзлоты несколько изменена. В этом случае идет образование сульфатных соединений с большим выделением тепла. В результате верхние горизонты вечномерзлой толщи имеют, например, кое-где на северо-востоке бывшем СССР, среднюю годовую температуру – 6 градусов, при -10 градусах а окружающем мерзлом массиве.

Повышенная радиоактивность также скорее всего ведет к повышению средних годовых температур за счет поступления тепла из недр Земли. Наблюдается местное повышении е температур горных пород в результате самовозгорание угольных пластов в районах каменноугольных месторождений. Вулканизм, как фактор, влияющих на формирование температур вечной мерзлоты, еще не достаточно хорошо изучен, но, по-видимому, поток тепла из недр земли не может вызывать значительного повышения температур горных пород, о чем можно судить на примере Камчатки.

Мощность вечной мерзлоты. Рассмотренные физико-географические и геологические условия теплообмена земной коры с атмосферой определяют глубину сезонного промерзания и протаивания грунтов, температуру горных пород у подошвы слоя с годовыми колебаниями ее и, следовательно, мощность вечномерзлых толщ. Прямой зависимости мощности вечномерзлых толщ от температуры горных пород на глубине 10-15 м, т.е. у подошвы слоя с годовыми колебаниями температуры, не имеется, так как мощность эта, помимо температуры, определяется также составом, строением и теплофизическими свойствами мерзлых пород и подстилающих их талых.

«Монолитные, кристаллические и плотные микропористые породы при прочих равных условиях промерзают на большую глубину, чем макропористые водоносные. Различие в мощности указанных литологических разновидностей мерзлых толщ может достигать десятков и сотен метров; так, при одной и той же температуре горных пород -10 градусов на глубине 10-15 м мощность многолетнемерзлых горных пород за счет разного их состава может изменяться от 300 до 600 м. Поэтому нельзя подсчитывать мощности мерзлых толщ на основании только среднего геотермического градиента без учета состава мерзлых и подстилающих их немерзлых горных пород. Величина геотермического градиента в толще мерзлых горных пород при постоянном потоке тепла определяется их составом и может быть различной в зависимости от различий последнего. По этим же соображениям нельзя характеризовать широтную зональность развития толщ многолетнемерзлых горных пород лишь глубиной залегания нижней поверхности мерзлой толщи без учета ее состава» (Кудрявцев, 1959).

Тем не менее средняя годовая температура является одним из основных условий, определяющих мощность вечномерзлой толщи. Там, где средняя годовая температура земной коры выше, мощность вечной мерзлоты, при прочих равных условиях, меньше, чем в тех местах, где температура эта ниже.

Сильное влияние на мощность вечной мерзлоты оказывают водоемы – озера и реки, их глубина и ширина. Мы уже отмечали, что при глубине водоема больше глубины его сезонного промерзания дно водоема круглый год остается талым и вечная мерзлота отсутствует. И только при условии, если ширина водоема не больше мощности вечномерзлой толщи по берегам водоема, то за счет бокового охлаждения может быть вечная мерзлота и под водоемом на некоторой глубине. Но во всех случаях под озерами и реками мощность вечномерзлой толщи меньше, чем за их пределами.

Информация о работе Современное состояния подземного оледенения Сибири