Автор работы: Пользователь скрыл имя, 08 Октября 2013 в 19:23, курсовая работа
В последние годы в России существенно увеличивается доля месторождений с трудноизвлекаемыми запасами. Эффективность разработки этих месторождений ниже обычных при более низких коэффициентах нефтеотдачи. Во многом это обуславливается отсутствием необходимых технологий для существующих категорий трудноизвлекаемых запасов. Вместе с тем, разнообразие геолого-физических особенностей нефтяных месторождений и пластов не позволяет достичь необходимых результатов за счет применения какой-то универсальной технологии разработки нефтяных месторождений. Как показывает практика наиболее высокие результаты могут быть получены при использовании адресных технологий для конкретных условий.
ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ
государственное образовательное учреждение высшего профессионального образования
Кафедра «РЭГГКМ» |
КУРСОВАЯ РАБОТА
По предмету: «Физика нефтяного и газового пласта»
Тема: «Методы нестационарного заводнения» (Циклическое воздействие; смена направления фильтрационных потоков; форсированный отбор)
Выполнил: ст. группы НРк-06-3
Зверюков.А.С.
Проверил: д.г-м.н. Ягафаров А.К.
Тюмень 2009
В последние годы в
России существенно увеличивается
доля месторождений с
Применяемая система заводнения не всегда учитывает особенности геологического строения пластов и не обеспечивает (по разным причинам) необходимого охвата вытеснением по площади и разрезу, в результате чего разработка многих месторождений характеризуется недостаточно высокими коэффициентами нефтеотдачи, незначительными темпами отбора нефти и большим объемом попутно-добываемой воды.
В связи с этим важным направлением повышения эффективности разработки трудноизвлекаемых запасов является адаптация известных и создание новых технологий воздействия на пласты с учетом особенностей их строения и свойств, в первую очередь для условий месторождений, наиболее характерных для данного региона.
Основные особенности процесса нестационарного воздействия на пласты.
Итак, рассмотрим основные особенности процесса нестационарного воздействия на пласты.
Циклическое (нестационарное) заводнение является одним из эффективных гидродинамических способов увеличения нефтеотдачи и сокращения удельных расходов воды на добычу нефти.
Эффективность метода определяется двумя неразрывно связанными процессами:
Наиболее эффективным
применение метода является для мощных
слоисто-неоднородных пластов с
хорошей гидродинамической
Перечисленные свойства коллекторов и нефтей, благоприятные для применения метода циклического воздействия, связаны очевидным образом с внутренним механизмом рассматриваемого процесса.
Метод циклического (нестационарного) заводнения нашел широкое применение на нефтяных месторождениях Татарии, Самарской области, Западной Сибири и т.д. Общепризнанным достоинством метода является простота его осуществления, применимость в широком диапазоне пластовых условий и достаточно высокая экономическая и технологическая эффективность.
К настоящему времени накоплен достаточный опыт теоретических, экспериментальных и промысловых работ. Учитывая, что большинство месторождений находится или приближается к поздней стадии разработки, необходимо совершенствование и повышение эффективности технологии нестационарного заводнения применительно к этим условиям.
Эффективность реализации процесса нестационарного заводнения.
Эффективность реализации
нестационарного заводнения во многом
зависит от правильности выбора участка
на основе геолого-промысловой информации
Для реализации нестационарного воздействия необходимо выполнить классификацию объектов разработки, на основе методики критериального выбора объектов, для эффективного использования данного метода.
Суть методических положений о критериальном выборе пригодности тех или иных объектов разработки для дальнейшего осуществления на них технологии нестационарного заводнения сводится к следующему.
Поскольку все продуктивные пласты могут быть охарактеризованы одними и теми же общепринятыми показателями (характеристиками) – песчанистость, зональная и послойная неоднородности, степень выработки запасов, то более эффективное проектирование и реализация нестационарного заводнения могут быть осуществлены на основе критериального анализа имеющегося набора геологических характеристик предполагаемого объекта.
Вначале все имеющиеся объекты делятся на три условных группы с различной степенью песчанистости – менее 0,29; 0,3-0,79 и более 0,8. После этого анализируется степень послойной неоднородности, в том числе расчлененность, а также степень выработки запасов. На последнем этапе определяется степень предпочтительности применения нестационарного заводнения на анализируемом участке, которая варьируется от 0 до 1.
Проведение анализа, систематизации и классификации объектов разработки для определения пригодности применения технологии нестационарного заводнения основывается на комплексе имеющейся исходной геолого-промысловой информации.
При первоначальном анализе объектов разработки учитывается размер залежи, наличие системы ППД и количество нагнетательных скважин. Объекты разработки, эксплуатируемые скважинами имеющие небольшие запасы нефти, в дальнейшей классификации не учитываются.
По результатам анализа геолого-физических характеристик и проведения классификации объектов разработки месторождений по предпочтительности применения нестационарного заводнения все рассматриваемые объекты можно разделить на 4 степени предпочтительности:
- высокая категория предпочтительности (0,6- 1)
- средняя категория предпочтительности (0,4 - 0,59)
- низкая категория предпочтительности (0,15 - 0,39)
- не пригодные для нестационарного заводнения
Выбор участков для реализации нестационарного заводнения осуществлялся на основании анализа сложившейся системы разработки, карт текущего состояния разработки, имеющейся геолого-промысловой информации, а также на основе распределения остаточных нефтенасыщенных толщин.
Эффективность реализации нестационарного заводнения напрямую зависит от правильного определения времени циклов воздействия, основанного на определении средней проницаемости участка в соответствии с имеющейся геолого-промысловой информацией, включая данные ГДИ и исследования кернов. На основании полученных данных рассчитываются средневзвешенные значения гидропроводности и пьезопроводности пласта в пределах данного участка.
-В результате расчетов, было получено, что длительность полуцикла по опытному участку пласта Б8 Аганского месторождения составляет 3,5 мес.
На период проведения
нестационарного воздействия
Изменение направлений фильтрационных потоков
Технология метода заключается в том, что закачка воды прекращается в одни скважины и переносится на другие, в результате чего обеспечивается изменение направления фильтрационных потоков до 90°.
Физическая сущность процесса состоит в следующем:
Во-первых, при обычном заводнении вследствие вязкостной неустойчивости процесса вытеснения образуются целики нефти, обойденные водой.
Во-вторых, при вытеснении нефти водой водонасыщенность вдоль направления вытеснения уменьшается. При переносе фронта нагнетания в пласте создаются изменяющиеся по величине и направлению градиенты гидродинамического давления, нагнетаемая вода внедряется в застойные малопроницаемые зоны, большая ось которых теперь пересекается с линиями тока, и вытесняет из них нефть в зоны интенсивного движения воды. Объем закачки вдоль фронта целесообразно распределить пропорционально оставшейся нефтенасыщенности (соответственно уменьшающейся водонасыщенности).
Изменение направления фильтрационных потоков достигается за счет дополнительного разрезания залежи на блоки, очагового заводнения, перераспределения отборов и закачки между скважинами, циклического заводнения. Метод технологичен, требует лишь небольшого резерва и мощности насосных станций и наличия активной системы заводнения (поперечные разрезающие ряды, комбинация приконтурного и внутриконтур-ного заводнении и др.). Он позволяет поддерживать достигнутый уровень добычи нефти, снижать текущую обводненность и увеличивать охват пластов заводнением.
Метод более эффективен в случае повышенной неоднородности пластов, высоковязких нефтей и применения в первой трети основного периода разработки.
Форсированный отбор жидкости (ФОЖ) является методом увеличения нефтеотдачи продуктивных пластов, реализация которого осуществляется за счёт увеличения градиента давления в прискважинной зоне пласта. В результате проведения этого мероприятия зачастую снижается обводненность продукции скважин с высокой базовой обводненностью. Наиболее яркие результаты получены при анализе результатов ФОЖ на водоплавающих залежах.
Форсирование отборов
на скважинах месторождений
Петелинского месторождения, объект БС11 Ефремовского месторождения, объект БС8 Кудринского месторождения, объекты БП9 и БП10-11 Тарасовского месторождения. На рис. 1 представлена динамика суммарных эксплуатационных показателей скважин объекта АС4 Петелинского месторождения, на которых было проведено форсирование отборов.
Рис. 1. Динамика суммарных эксплуатационных показателей скважин объекта АС4 Петелинского месторождения, на которых проведен форсированный отбор жидкости: 1 - средняя обводненность продукции; 2 - средний дебит жидкости; 3 - средний дебит нефти.
На рис. 2 изображена динамика показателей эксплуатации форсированной скважины № 1046 объекта БП10-11 Тарасовского месторождения. Начало форсирования отборов на рисунках отмечено стрелкой. Обе динамики характеризуются снижением обводненности продукции с ростом среднего дебита жидкости. На рис. 2 отмечается и обратная закономерность –рост обводненности продукции при снижении дебита жидкости.
Рис. 2. Динамика показателей эксплуатации скважины № 1046 объекта БП10-11 Тарасовского месторождения:
1 - обводненность продукции; 2 - дебит жидкости; 3 - дебит нефти; 4 - дебит воды.
Форсированный отбор жидкости достаточно эффективен на водонефтяных зонах, где имеются выдержанные глинистые перемычки между разнонасыщенными частями продуктивного разреза. Выдержанность глинистых перемычек является условием проявления описанной закономерности и подразумевается ниже при использовании терминов водоплавающей залежи и водонефтяной зоны (ВНЗ).
В настоящее время отсутствует четкое определение целей и задач форсированного отбора жидкости. Существует мнение, что форсированный отбор — рациональный вариант разработки нефтяной залежи на завершающем этапе, который надо проектировать, официально утверждать и обязательно выполнять. Для его проектирования имеется все необходимое: методика, включающая модель зонально и послойно неоднородного пласта, уравнения разработки нефтяной залежи, общий экономический критерий рациональности, методы решения обратных задач по определению основных параметров нефтяных пластов и практически примененных систем разработки; современная вычислительная техника и полученная индивидуально по скважинам информация об их эксплуатации: о дебитах жидкости и обводненности (следовательно, о дебитах нефти), забойных давлениях (следовательно, о коэффициентах продуктивности), составе солей в отбираемой воде (следовательно, о доле посторонней воды). Довольно странным представляется, что при наличии всего этого проблема форсированного отбора не исследована в полном объеме, а форсированный отбор противопоставляется рациональному. На многих нефтепромыслах очень плохо обстоит дело с информацией об эксплуатации каждой скважины. В этих условиях для промысловиков более приемлем и понятен форсированный отбор, чем рациональный, ибо для форсированного отбора не нужна или почти не нужна информация. В условиях неполного объема информации об эксплуатации скважин многие нефтепромысловые работники непоколебимо уверены, что лучше завысить производительность глубинных насосов. При нежелании и неумении устанавливать индивидуально по скважинам рациональные отборы устанавливают форсированные, не осознавая, что часто увеличение отбора жидкости уменьшает отбор нефти на 10—20 % и более.