Светодиоды и лазеры на основе полупроводниковых гетероструктур

Автор работы: Пользователь скрыл имя, 27 Мая 2013 в 13:08, реферат

Краткое описание

Современная наука наперегонки бежит с современными же технологиями. Обыватель зачастую не успевает удивляться техническим и технологическим чудесам, отмечая, что будущее уже наступило…

Содержание

1. Введение………………………………………………………….............
2. Гетероструктура………………………………………………………...
3. Светодиоды……………………………………………………………...
3.1 Принцип работы светодиода………………………………………
3.2 Органический светодиод…………………………………………...
3.2.1 Принцип действия органического светодиода………………
3.2.2 Применение органического светодиода……………………...
4. Лазер ……………………………………………………………………..
4.1 Устройство лазера…………………………………………………...
4.1.1 Источник энергии……………………………………………….
4.1.2 Рабочее тело……………………………………………………...
4.1.3 Оптический резонатор………………………………………….
4.2 Принцип действия лазера………………………………………….
4.3 Применение лазеров………………………………………………...
5. Полупроводниковый лазер……………………………………………
5.1 Принцип действия…………………………………………………..
5.2 Лазеры на двойной гетероструктуре……………………………...
5.3 Диод с квантовыми ямами…………………………………………
5.4 Гетероструктурные лазеры с раздельным удержанием………..
5.5 Применение полупроводникового лазера………………………..
6. Заключение……………………………………………………………...
7. Список используемых источников…………………………………...

Вложенные файлы: 1 файл

Реферат.docx

— 294.69 Кб (Скачать файл)

Рабочее тело является основным определяющим фактором рабочей длины  волны, а также остальных свойств  лазера. Существует большое количество различных рабочих тел, на основе которых можно построить лазер. Рабочее тело подвергается «накачке», чтобы получить эффект инверсии электронных  населённостей, что вызывает вынужденное излучение фотонов и эффект оптического усиления.

В лазерах используются следующие  рабочие тела:

Жидкость, например в лазерах на красителях. Состоят из органического растворителя, например метанола, этанола или этиленгликоля, в которых растворены химические красители, например кумарин или родамин. Конфигурация молекул красителя определяет рабочую длину волны.

Газы, например, углекислый газ, аргон, криптон или смеси, такие  как в гелий-неоновых лазерах. Такие  лазеры чаще всего накачиваются электрическими разрядами.

Твёрдые тела, такие как  кристаллы и стекла. Сплошной материал обычно легируется (активируется) добавкой небольшого количества ионов хрома, неодима, эрбия или титана. Типичные используемые кристаллы: алюмо-иттриевый гранат (YAG), литиево-иттриевый фторид (YLF), сапфир (оксид алюминия) и силикатное стекло. Самые распространённые варианты: Nd:YAG, титан-сапфир, хром-сапфир (известный также как рубин), легированный хромом стронций-литий-алюминиевый фторид (Cr:LiSAF), Er:YLF и Nd:glass (неодимовое стекло). Твердотельные лазеры обычно накачиваются импульсной лампой или другим лазером.

Полупроводники. Материал, в  котором переход электронов между  энергетическими уровнями может  сопровождаться излучением. Полупроводниковые лазеры очень компактны, накачиваются электрическим током, что позволяет использовать их в бытовых устройствах, таких как проигрыватели компакт-дисков.

4.1.3 Оптический резонатор

Оптический резонатор, простейшей формой которого являются два параллельных зеркала, находится вокруг рабочего тела лазера. Вынужденное излучение рабочего тела отражается зеркалами обратно и опять усиливается. Волна может отражаться многократно до момента выхода наружу. В более сложных лазерах применяются четыре и более зеркал, образующих резонатор. Качество изготовления и установки этих зеркал является определяющим для качества полученной лазерной системы.

Как правило в твердотельных  лазерах зеркала формируются  на полированных торцах активного элемента. В газовых лазерах и лазерах на красителях - на торцах колбы с рабочим телом.

Для выхода излучения одно из зеркал делается полупрозрачным.

Дополнительные устройства

Также, в лазерной системе  могут монтироваться дополнительные устройства для получения различных  эффектов, такие как поворачивающиеся зеркала, модуляторы, фильтры и поглотители. Их применение позволяет менять параметры излучения лазера, например, длину волны, длительность импульсов и т. д.

4.2 Принцип действия лазера

Физической основой работы лазера служит явление вынужденного (индуцированного) излучения. Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения. При этом излучённый фотон когерентен фотону, вызвавшему излучение (является его «точной копией»). Таким образом происходит усиление света. Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайные направления распространения, поляризацию и фазу.

Рис. 7 «Гелий-неоновый лазер. Светящийся луч в центре — это не собственно лазерный луч, а электрический разряд, порождающий свечение, подобно тому, как это происходит в неоновых лампах. Луч проецируется на экран справа в виде светящейся красной точки»

Вероятность того, что случайный  фотон вызовет индуцированное излучение  возбуждённого атома, в точности равняется вероятности поглощения этого фотона атомом, находящимся в невозбуждённом состоянии. Поэтому для усиления света необходимо, чтобы возбуждённых атомов в среде было больше, чем невозбуждённых (так называемая инверсия населённостей). В состоянии термодинамического равновесия это условие не выполняется, поэтому используются различные системы накачки активной среды лазера (оптические, электрические, химические и др.).

Первоисточником генерации  является процесс спонтанного излучения, поэтому для обеспечения преемственности поколений фотонов необходимо существование положительной обратной связи, за счёт которой излучённые фотоны вызывают последующие акты индуцированного излучения. Для этого активная среда лазера помещается в оптический резонатор. В простейшем случае он представляет собой два зеркала, одно из которых полупрозрачное — через него луч лазера частично выходит из резонатора. Отражаясь от зеркал, пучок излучения многократно проходит по резонатору, вызывая в нём индуцированные переходы. Излучение может быть как непрерывным, так и импульсным. При этом, используя различные приборы (вращающиеся призмы, ячейки Керра и др.) для быстрого выключения и включения обратной связи и уменьшения тем самым периода импульсов, возможно создать условия для генерации излучения очень большой мощности (так называемые гигантские импульсы). Этот режим работы лазера называют режимом модулированной добротности.

Генерируемое лазером  излучение является монохроматическим (одной или дискретного набора длин волн), поскольку вероятность  излучения фотона определённой длины  волны больше, чем близко расположенной, связанной с уширением спектральной линии, а, соответственно, и вероятность  индуцированных переходов на этой частоте тоже имеет максимум. Поэтому постепенно в процессе генерации фотоны данной длины волны будут доминировать над всеми остальными фотонами. Кроме этого, из-за особого расположения зеркал в лазерном луче сохраняются лишь те фотоны, которые распространяются в направлении, параллельном оптической оси резонатора на небольшом расстоянии от неё, остальные фотоны быстро покидают объём резонатора. Таким образом луч лазера имеет очень малый угол расходимости. Наконец, луч лазера имеет строго определённую поляризацию. Для этого в резонатор вводят различные поляроиды, например, ими могут служить плоские стеклянные пластинки, установленные под углом Брюстера к направлению распространения луча лазера.

 

4.3 Применение  лазеров

С момента своего изобретения  лазеры зарекомендовали себя как  «готовые решения ещё не известных  проблем». В силу уникальных свойств  излучения лазеров, они широко применяются  во многих отраслях науки и техники, а также в быту (проигрыватели  компакт-дисков, лазерные принтеры, считыватели штрих-кодов, лазерные указки и пр.). В промышленности лазеры используются для резки, сварки и пайки деталей из различных материалов. Высокая температура излучения позволяет сваривать материалы, которые невозможно сварить обычными способами (к примеру, керамику и металл). Луч лазера может быть сфокусирован в точку диаметром порядка микрона, что позволяет использовать его в микроэлектронике (так называемое лазерное скрайбирование). Лазеры используются для получения поверхностных покрытий материалов (лазерное легирование, лазерная наплавка, вакуумно-лазерное напыление) с целью повышения их износостойкости. Широкое применение получила также лазерная маркировка промышленных образцов и гравировка изделий из различных материалов. При лазерной обработке материалов на них не оказывается механическое воздействие, поэтому возникают лишь незначительные деформации. Кроме того, весь технологический процесс может быть полностью автоматизирован. Лазерная обработка потому характеризуется высокой точностью и производительностью.

Лазеры применяются в  голографии для создания самих голограмм  и получения гологафического объёмного изображения. Некоторые лазеры, например лазеры на красителях, способны генерировать монохроматический свет практически любой длины волны, при этом импульсы излучения могут достигать 10−16 с, а следовательно и огромных мощностей (так называемые гигантские импульсы). Эти свойства используются в спектроскопии, а также при изучении нелинейных оптических эффектов. С использованием лазера удалось измерить расстояние до Луны с точностью до нескольких сантиметров. Лазерная локация космических объектов уточнила значения ряда фундаментальных астрономических постоянных и способствовала уточнению параметров космической навигации, расширила представления о строении атмосферы и поверхности планет Солнечной системы. В астрономических телескопах, снабженных адаптивной оптической системой коррекции атмосферных искажений, лазер применяют для создания искусственных опорных звезд в верхних слоях атмосферы.

Применение лазеров в  метрологии и измерительной технике  не ограничивается измерением расстояний. Лазеры находят здесь разнообразнейшее применение: для измерения времени, давления, температуры, скорости потоков жидкостей и газов, угловой скорости (лазерный гироскоп), концентрации веществ, оптической плотности, разнообразных оптических параметров и характеристик, в виброметрии и др.

Сверхкороткие импульсы лазерного  излучения используются в лазерной химии для запуска и анализа химических реакций. Здесь лазерное излучение позволяет обеспечить точную локализацию, дозированность, абсолютную стерильность и высокую скорость ввода энергии в систему. В настоящее время разрабатываются различные системы лазерного охлаждения, рассматриваются возможности осуществления с помощью лазеров управляемого термоядерного синтеза. Лазеры используются и в военных целях, например, в качестве средств наведения и прицеливания. Рассматриваются варианты создания на основе мощных лазеров боевых систем защиты воздушного, морского и наземного базирования.

В медицине лазеры применяются  как бескровные скальпели, используются при лечении офтальмологических заболеваний (катаракта, отслоение  сетчатки, лазерная коррекция зрения и др.). Широкое применение получили также в косметологии (лазерная эпиляция, лечение сосудистых и пигментных дефектов кожи, лазерный пилинг, удаление татуировок и пигментных пятен).

В настоящее время бурно  развивается так называемая лазерная связь. Известно, что чем выше несущая частота канала связи, тем больше его пропускная способность. Поэтому радиосвязь стремится переходить на всё более короткие длины волн. Длина световой волны в среднем на шесть порядков меньше длины волны радиодиапазона, поэтому посредством лазерного излучения возможна передача гораздо большего объёма информации. Лазерная связь осуществляется как по открытым, так и по закрытым световодным структурам, например, по оптическому волокну. Свет за счёт явления полного внутреннего отражения может распространяться по нему на большие расстояния, практически не ослабевая.

Лазером, обеспечивающим максимальную мощность в импульсе, на данный момент является Техасский петаваттный  лазер.

 

5. Полупроводниковый лазер

Полупроводниковые лазеры отличаются от газовых и твердотельных тем, что излучающие переходы происходят в полупроводниковом материале  не между дискретными энергетическими состояниями электрона, а между парой широких энергетических зон. Поэтому переход электрона из зоны проводимости в валентную зону с последующей рекомбинацией приводит к излучению, лежащему в относительно широком спектральном интервале и составляющему несколько десятков нанометров, что намного шире полосы излучения газовых или твердотельных лазеров.

 

5.1 Принцип действия

Когда на анод обычного диода  подаётся положительный потенциал, то говорят, что диод смещён в прямом направлении. При этом дырки из p-области инжектируются в n-область p-n перехода, а электроны из n-области инжектируются в p-область полупроводника. Если электрон и дырка оказываются «вблизи» (на расстоянии, когда возможно туннелирование), то они могут рекомбинировать с выделением энергии в виде фотона определённой длины волны (в силу сохранения энергии) и фонона (в силу сохранения импульса, потому что фотон уносит импульс). Такой процесс называется спонтанным излучением и является основным источником излучения в светодиодах.

Однако, при определённых условиях, электрон и дырка перед  рекомбинацией могут находиться в одной области пространства достаточно долгое время (до микросекунд). Если в этот момент через эту область  пространства пройдёт фотон нужной (резонансной) частоты, он может вызвать  вынужденную рекомбинацию с выделением второго фотона, причём его направление, вектор поляризации и фаза будут в точности совпадать с теми же характеристиками первого фотона.

В лазерном диоде полупроводниковый  кристалл изготавливают в виде очень  тонкой прямоугольной пластинки. Такая  пластинка по сути является оптическим волноводом, где излучение ограничено в относительно небольшом пространстве. Верхний слой кристалла легируется для создания n-области, а в нижнем слое создают p-область. В результате получается плоский p-n переход большой площади. Две боковые стороны (торцы) кристалла полируются для образования гладких параллельных плоскостей, которые образуют оптический резонатор, называемый резонатором Фабри-Перо. Случайный фотон спонтанного излучения, испущенный перпендикулярно этим плоскостям, пройдёт через весь оптический волновод и несколько раз отразится от торцов, прежде чем выйдет наружу. Проходя вдоль резонатора, он будет вызывать вынужденную рекомбинацию, создавая новые и новые фотоны с теми же параметрами, и излучение будет усиливаться (механизм вынужденного излучения). Как только усиление превысит потери, начнётся лазерная генерация.

Лазерные диоды могут  быть нескольких типов. У основной их части слои сделаны очень тонкими, и такая структура может генерировать излучение только в направлении, параллельном этим слоям. С другой стороны, если волновод сделать достаточно широким  по сравнению с длиной волны, он сможет работать уже в нескольких поперечных режимах. Такой диод называется многомодовым (англ. «multi-mode»). Применение таких лазеров возможно в тех случаях, когда от устройства требуется высокая мощность излучения, и не ставится условие хорошей сходимости луча (то есть допускается его значительное рассеивание). Такими областями применений являются: печатающие устройства, химическая промышленность, накачка других лазеров. С другой стороны, если требуется хорошая фокусировка луча, ширина волновода должна изготавливаться сравнимой с длиной волны излучения. Здесь уже ширина луча будет определяться только пределами, накладываемыми дифракцией. Такие устройства применяются в оптических запоминающих устройствах, лазерных целеуказателях, а также в волоконной технике. Следует, однако, заметить, что такие лазеры не могут поддерживать несколько продольных режимов, то есть не могут излучать на разных длинах волн одновременно.

Информация о работе Светодиоды и лазеры на основе полупроводниковых гетероструктур