Анализ экономической информации средствами искусственного интеллекта

Автор работы: Пользователь скрыл имя, 15 Июня 2013 в 13:02, курсовая работа

Краткое описание

Интеллектуальными считаются задачи, связанные с разработкой алгоритмов решения ранее нерешенных задач определенного типа. Отличительной особенностью и одним из основных источников эффективности алгоритмов является то, что они сводят решение сложной задачи к определенной последовательности достаточно простых или даже элементарных для решения задач. В результате не решаемая задача становится решаемой. Исходная информация поступает на вход алгоритма, на каждом шаге она преобразуется и в таком виде передается на следующий шаг, в результате чего на выходе алгоритма получается информация, представляющая собой решение задачи.

Содержание

ВВЕДЕНИЕ 3
1 ПОНЯТИЕ "СИСТЕМА ИСКУССТВЕННОГО ИНТЕЛЛЕКТА" 5
1.1 Понятие и классификация систем искусственного интеллекта 7
2 ИСПОЛЬЗОВАНИЕ НЕЙРОННЫХ СЕТЕЙ В ФИНАНСАХ И БИЗНЕСЕ 13
2.1 Прогнозирование на основе нейросетей 14
2.2 Преимущества и недостатки прогнозирования на нейросетях 16
2.3 Обзор программных продуктов 17
3 ПРИМЕНЕНИЕ НЕЙРОСЕТЕВЫХ ТЕХНОЛОГИЙ НА ПРАКТКЕ 20
ЗАКЛЮЧЕНИЕ 27
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 29
ПРИЛОЖЕНИЕ А 30
ПРИЛОЖЕНИЕ Б 31

Вложенные файлы: 1 файл

Анализ экономической информации средствами искусственного интеллекта.doc

— 200.00 Кб (Скачать файл)

 

Таблица 3 - Создание собственной системы «с нуля»

Достоинства

  • Управление процессом разработки
  • Легкость внесения изменений и модернизации
  • Полная конфиденциальность

Недостатки

  • Необходим штат программистов
  • Необходимы специалисты по нейросетям
  • Занимает много времени
  • Высокая стоимость
  • Необходима настройка системы

 

Таблица 4 - Создание системы на основе готовых «нейропакетов»

Достоинства

  • Невысокая стоимость базового пакета и обновлений
  • Готовые архитектуры и алгоритмы обучения
  • Пакет создан профессионалами в области нейросетей
  • Достаточно высокая гибкость
  • Техническая поддержка производителя пакета
  • Полная конфиденциальность
  • Не требуется программирование
  • От пользователя не требуется глубокого знания нейросетей
  • Более эффективное обнаружение и исправление ошибок за счет большого числа пользователей
  • Возможность приобретения надстроек к пакету у различных производителей
  • Возможность общения с другими пользователями пакета

Недостатки

  • Не всегда возможно создавать собственные архитектуры и алгоритмы обучения
  • Необходима настройка системы
  • Необходима подготовка данных

 

Из приведенной таблицы видно, что выбор варианта решения должен определяться исходя из целей и возможностей компании. Первые три варианта больше подойдут очень крупным компаниям, планирующим деятельность на 5-10 лет вперед и не ожидающим быстрой окупаемости вложений в новые технологии. По этому пути идут многие западные фирмы, желающие увеличить прибыльность своего бизнеса в условиях жесткой конкуренции.

Вариант создания собственной системы  на основе готового нейропакета подходит для менее крупных компаний и  даже для частных лиц - инвесторов, трейдеров, предпринимателей. Впрочем, имеется и несколько примеров крупнейших концернов, избравших этот вариант и добившихся успеха. Так, например, компания DuPont разработала новый материал - безопасное стекло, используя нейросетевой пакет NeuroShell. Также этот пакет используется в крупных западных банках, таких как Citibank, Security Pacific National Bank, The World Bank, Lloyds Bank, The Federal Reserve Board, Federal Reserve Bank of New York, и в страховых компаниях Royal Insurance, Presidential Life Insurance, New York Life Insurance и других. Ниже будет рассказано об некоторых  способах использования нейросетей в различных областях бизнеса и технологий (таблица 5):

 

Таблица 5 - Использование нейросетей в различных областях бизнеса и технологий

Функции

До применения нейросетей

После применения нейросетей

1. Отслеживание операций с краденными и поддельными кредитными картами

Отслеживание операций по картам с помощью специальных программ и операторов

Специализированная система Falcon фирмы HNC позволяет по частоте сделок и характеру покупок выделить подозрительные сделки и сигнализировать об этом.


 

 

Продолжение таблицы 5

2.Медицинская диагностика

Общепринятая методика объективной диагностики состоит в том, что в процессе обследования регистрируются "вызванные потенциалы" (отклики мозга) в ответ на звуковой раздражитель, проявляющиеся в виде всплесков на электроэнцефалограмме. Для диагностики слуха у детей врачу необходимо провести около 2000 тестов, что занимает около часа.

Компанией "НейроПроект" создана  система объективной диагностики слуха у грудных детей. Нейросеть способна с той же достоверностью определить уровень слуха уже по 200 наблюдениям в течение всего нескольких минут, причем без участия квалифицированного персонала.  

3. Обнаружение фальсификаций

Применение специальной экспертной системы с 14% эффективностью.

Нейросеть позволяет обнаруживать 38% мошеннических случаев. Для настройки системы были использованы также методы нечеткой логики и генетической оптимизации.


 

 

 

 

 

 

 

 

 

 

 

Продолжение таблицы 5

4. Анализ потребительского рынка

Обычные методы прогнозирования отклика потребителей маркетинговой службой и группой аналитиков.

Компания GoalAssist Corporation построила две  нейросети для решения этой задачи. Первая из них - это сеть с адаптивной архитектурой пакета NeuroShell Classifier компании Ward Systems Group, на входы которой подавались различные параметры товаров и рекламной политики. С помощью этой сети, предназначенной специально для классификации, было получено разделение входов на 4 класса, характеризующих отклик потребителей. Те же входы вместе с ответом первой сети подавались далее на вход пакета NeuroShell Predictor, который также содержит сложную самоорганизующуюся сеть, но приспособленную для задач количественного прогнозирования. Средняя ошибка предсказаний составила всего около 4%. Построение этой модели заняло около 120 часов, также потребовалось время на предобработку входных данных.


 

 

 

 

 

 

 

 

 

 

 

 

 

 

Продолжение таблицы 5

5. Исследование факторов спроса

Проведение маркетинговых  и социологических исследований. для этого компании проводят опросы потребителей, позволяющие выяснить, какие факторы являются для потребителя решающими при покупке данного товара или услуги, почему в некоторых случаях предпочтение отдается конкурентам, и какие улучшения товара потребитель хотел бы увидеть в будущем.

Нейросетевые методы позволяют вывлять сложные зависимости между факторами спроса, прогнозировать поведение потребителей при изменении маркетинговой политики, находить наиболее значимые факторы и оптимальные стратегии рекламы, а также очерчивать сегмент потребителей, наиболее перспективный для данного товара. 

6.Прогнозирова-ние потребления  энергии

Эти данные получают в  результате измерений потребляемой энергии для каждого клиента. Измерения проводятся каждые 15 минут, причем известно, что некоторые из них - ошибочны.

С помощью нейросетей была построена система выявления  ошибочных измерений, а также система прогнозирования потребления энергии в каждый момент времени. Знание точного прогноза позволило энергетической компании использовать гибкую тарифную политику и увеличить свою прибыль.


 

 

 

 

Продолжение таблицы 5

7. Оценка недвижимости

Стоимость недвижимости зависит от большого числа факторов. Так как вид этой зависимости неизвестен, то стандартные методы анализа неэффективны в задаче оценки стоимости квартиры. Как правило, эта задача решается экспертами-оценщиками, работающими в агентстве по недвижимости. Недостатком такого подхода является субъективность оценщика, а также возможные разногласия между различными экспертами.

Существуют успешные примеры решения задачи объективной оценки с помощью нейросети.


 

Приведенные выше примеры показывают, что технологии нейронных сетей применимы практически в любой области. В некоторых задачах, таких как прогнозирование котировок или распознавание образов, нейросети стали уже привычным инструментом. Нет сомнений, что повсеместное проникновение новых технологий и в другие области - только вопрос времени.

Внедрение новых наукоемких технологий в коммерческой фирме - достаточно непростое дело, требующее, кроме денег и времени, еще и некоторой перемены психологии. Однако, практика показывает, что эти вложения окупаются и выводят компанию на качественно новый уровень.

 

 

 

 

ЗАКЛЮЧЕНИЕ

Нейронные сети - это обобщенное название нескольких групп математических алгоритмов, объединенных одним общим свойством - умением обучаться на группе примеров, “узнавая” впоследствии черты ранее встреченных образов и ситуаций.

Основными предопределяющими условиями  их использования являются наличие  «исторических данных», используя  которые нейронная сеть сможет обучиться, а также невозможность или неэффективность использования других, более формальных, методов. Для того, чтобы сеть можно было применять в дальнейшем, ее прежде надо "натренировать" на полученных ранее данных, для которых известны и значения входных параметров, и правильные ответы на них. Нейросеть может "научиться" даже на массиве сгенерированных случайных чисел.

Нейросетевые технологии, применяемые  в финансовом и других методах анализа, давно перестали быть модной экзотикой и вызывать недоумение специалистов. В мире накоплен громадный опыт применения нейросетей, сто из ста западных финансовых и промышленных компаний применяют нейротехнологии в том или ином виде. В России же еще недавно найти приличный нейропакет было весьма непросто. Однако к настоящему времени барьер недоверия сломлен, появились обнадеживающие результаты решения различных аналитических задач с элементами нейротехнологий в условиях суровой российской действительности. Сегодня аналитики могут выбрать себе систему построения прогнозов соответственно своему вкусу, кругу решаемых задач.

В данной курсовой работе исследована тема использования нейронных сетей в финансах и бизнесе, показано применение нейросетевых технологий на практике, их достоинства и недостатки в зависимости от параметров внедрения.

 Нейрокомпьютеры позволяют с высокой эффективностью решать целый ряд "интеллектуальных" задач. Это задачи распознавания образов, адаптивного управления, прогнозирования, диагностики и т.д. Нейросети и нейрокомпьютеры представляют собой принципиально новый подход к описанным проблемам.

Разработки в области нейрокомпьютеров поддерживаются целым рядом международных  и национальных программ. В настоящее  время эксплуатируется более 70 нейросистем в самых различных областях — от финансовых прогнозов до экспертизы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

  1. Анил, К. Джейн Введение в искусственные нейронные сети/ К. Джейн Анил, Мао Жианчанг, К.М. Моиуддин.  // Открытые системы. — 1997 г., №4.
  2. Виноградова, М.М. Интеллектуальные информационные технологии в экономике и управлении/М.М. Виноградова//Стратегический маркетинг  гражданской продукции оборонной промышленности: доклад научно-практических семинаров. – М., 2001.
  3. Грабауров, В.А. Информационные технологии для менеджеров/В.А. Грабауров. - М.: Изд-во «Финансы и статистика», 2001. – 368 с.
  4. Луценко, Е.В. Интеллектуальные информационные системы/ Е.В. Луценко, Краснодар:  КубГАУ, 2006. – 615 с.
  5. NeuroProject [Электронный ресурс]. –Al&Data Analysis. Электрон. Дан. – М NeuroProjec Al&Data Analysis, 1992 – 2006. - Режим доступа: http// www.neuroproject.ru, свободный. – Заглавие с экрана.
  6. Финн В.К. Искусственный интеллект: Идейная база и основной продукт, 9-я национальная конференция по искусственному интеллекту, Труды конференции, Т.1, М., Физматлит, 2004, с.11-20.
  7. Финн В.К. Об интеллектуальном анализе данных //Новости искусственного интеллекта №3, 2004.
  8. Карпов В.Э. Эволюционное моделирование. Проблемы формы и содержания // Новости искусственного интеллекта №5, 2003.
  9. Барсуков А.П. Кто есть кто в робототехнике. Справочник. Вып.1., ДМК-Пресс, 2005, -125 с.
  10. Добрынин Д.А., Карпов В.Э. Моделирование некоторых простейших форм поведения: от условных рефлексов к индуктивной адаптации //Сб. научных трудов I Международной конференции «Системный анализ и информационные технологии САИТ-2005», М.: КомКнига, Т.1, стр. 188-193.

 

ПРИЛОЖЕНИЕ А

 

Простой генетический алгоритм

 

ПРИЛОЖЕНИЕ Б

Технология когнитивного анализа  и моделирования




Информация о работе Анализ экономической информации средствами искусственного интеллекта