Автор работы: Пользователь скрыл имя, 01 Мая 2012 в 15:04, реферат
С середины 60-х годов существенно изменился подход к созданию вычислительных машин. Вместо независимой разработки аппаратуры и некоторых средств математического обеспечения стала проектироваться система, состоящая из совокупности аппаратных (hardware) и программных (software) средств. При этом на первый план выдвинулась концепция их взаимодействия. Так возникло принципиально новое понятие — архитектура ЭВМ.
Архитектура ЭВМ— логическая организация и структура аппаратных и программных ресурсов вычислительной системы. Архитектура заключает в себе требования к функциональности и принципы организации основных узлов ЭВМ.
Введение…………………………………………………………3
Классификация ЭВМ…………………………………………....4
Большие ЭВМ……………………………………………………4
Понятие архитектуры ЭВМ…………………………………….4
Описание различных структур построения ЭВМ…………….5
Типы архитектуры………………………………………………7
Архитектура фон Неймана……………………………………..8
Гарвардская архитектура……………………………………….8
Классическая гарвардская архитектура……………………….8
Модифицированная гарвардская архитектура………………..9
Расширенная гарвардская архитектура………………………..9
Гибридные модификации с архитектурой фон-Неймана…….9
Использование…………………………………………………...9
Заключение……………………………………
ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ЭКОНОМИКИ И ФИНАНСОВ»
Реферат по информатике на тему:
АРХИТЕКТУРА БОЛЬШИХ ЭВМ
Содержание
Введение…………………………………………………………
Классификация ЭВМ…………………………………………....4
Большие ЭВМ……………………………………………………4
Понятие архитектуры ЭВМ…………………………………….4
Описание различных структур построения ЭВМ…………….5
Типы архитектуры………………………………………………7
Архитектура фон Неймана……………………………………..8
Гарвардская архитектура……………………………………….8
Использование……………………………………………
Заключение……………………………………………………
Архитектура больших ЭВМ
С середины 60-х годов существенно изменился подход к созданию вычислительных машин. Вместо независимой разработки аппаратуры и некоторых средств математического обеспечения стала проектироваться система, состоящая из совокупности аппаратных (hardware) и программных (software) средств. При этом на первый план выдвинулась концепция их взаимодействия. Так возникло принципиально новое понятие — архитектура ЭВМ.
Архитектура ЭВМ— логическая организация и структура аппаратных и программных ресурсов вычислительной системы. Архитектура заключает в себе требования к функциональности и принципы организации основных узлов ЭВМ.
Чтобы судить о возможностях ЭВМ, их принято разделять на группы по определенным признакам, т. е. классифицировать. Сравнительно недавно классифицировать ЭВМ по различным признакам не составляло большого труда. Важно было только определить признак классификации, например: по назначению, по габаритам, по производительности, по стоимости, по элементной базе и т. д.
С развитием технологии производства ЭВМ классифицировать их стало все более затруднительно, ибо стирались грани между такими важными характеристиками, как производительность, емкость внутренней и внешней памяти, габариты, вес, энергопотребление и др. Например, персональный компьютер, для размещения которого достаточно стола, имеет практически такие же возможности и технические характеристики, что и достаточно совершенная в недавнем прошлом ЭВМ Единой системы (ЕС), занимающая машинный зал в сотни квадратных метров. Поэтому разделение ЭВМ по названным признакам нельзя воспринимать как классификацию по техническим параметрам. Это, скорее, эвристический подход, где большой вес имеет предполагаемая сфера применения компьютеров.
С этой точки зрения классификацию вычислительных машин по таким показателям, как габариты и производительность, можно представить следующим образом:
сверхпроизводительные ЭВМ и системы (супер-ЭВМ);
большие ЭВМ (универсальные ЭВМ общего назначения);
средние ЭВМ;
малые или мини-ЭВМ;
микро-ЭВМ;
персональные компьютеры;
микропроцессоры.
Отметим, что понятия «большие», «средние» и «малые» для отечественных ЭВМ весьма условны и не соответствуют подобным категориям зарубежных ЭВМ.
Исторически первыми появились большие ЭВМ (универсальные ЭВМ общего назначения), элементная база которых прошла путь от электронных ламп до схем со сверхвысокой степенью интеграции.
Поколение ЭВМ определяется элементной базой (лампы, полупроводники, микросхемы различной степени интеграции), архитектурой и вычислительными возможностями. Большие ЭВМ считаются самыми мощными компьютерами. Их применяют для обслуживания очень крупных организаций и даже целых отраслей народного хозяйства. За рубежом компьютеры этого класса называются мейнфреймами (mainframe). В России за ними закрепился термин большие ЭВМ. Штат обслуживания большой ЭВМ составляет до многих десятков человек. На базе таких суперкомпьютеров создаются вычислительные центры, включающие в себя несколько отделов или групп.
Под архитектурой ЭВМ понимается совокупность общих принципов организации аппаратно-программных средств и их характеристик, определяющая функциональные возможности ЭВМ при решении соответствующих классов задач.
В современной литературе термин «архитектура» употребляется в различных контекстах, например для теоретической классификаци
Архитектура ЭВМ охватывает широкий круг проблем, связанных с построением комплекса аппаратных и программных средств и учитывающих множество факторов. Среди этих факторов важнейшими являются: стоимость, сфера применения, функциональные возможности, удобство эксплуатации, а одним из главных компонентов архитектуры являются аппаратные средства.
Архитектуру вычислительного средства следует отличать от его структуры. Структура вычислительного средства определяет его конкретный состав на некотором уровне детализации (устройства, блоки узлы и т. д.) и описывает связи внутри средства во всей их полноте. Архитектура же определяет правила взаимодействия составных частей вычислительного средства, описание которых выполняется в той мере, в какой это необходимо для формирования правил их взаимодействия. Она регламентирует не все связи, а наиболее важные, которые должны быть известны для более грамотного использования данного средства.
Так, пользователю ЭВМ безразлично, на каких элементах выполнены электронные схемы, схемно или программно реализуются команды и т. д. Важно другое: как те или иные структурные особенности ЭВМ связаны с возможностями, предоставляемыми пользователю, какие альтернативы реализованы при создании машины и по каким критериям принимались решения, как связаны между собой характеристики отдельных устройств, входящих в состав ЭВМ, и какое влияние они оказывают на общие характеристики машины. Иными словами, архитектура ЭВМ действительно отражает круг проблем, относящихся к общему проектированию и построению вычислительных машин и их программного обеспечения.
Описание различных структур построения ЭВМ
Непосредственное присоединение различных функци
В качестве логических условий должны быть заданы виды сигналов (адресные, информационные и управляющие) и их количество, система кодирования и форма передачи данных, функции адресных и управляющих сигналов и т.п.
В качестве электрических условий обеспечения совместимости зада
К конструктивным условиям обеспечения совместимости относятся констр
В отечественной практике для описания совокупности схемотехнических средств, обеспечивающих непосредственное взаимодействие составных элементов систем обработки данных (ЭВМ, сетей ЭВМ, систем передачи данных), подсистем периферийного оборудования, используются понятия «интерфейс», «стык» и «протокол».
Под стандартным интерфейсом понима
Стык — место соединения устройств передачи сигналов данных, входящих в систему передачи данных. Это понятие используется вместо понятия интерфейса для описания функций и средств сопряжения элементов средств связи и систем передачи данных (СПД).
Под протоколом понимается строго заданная процедура или совокупность правил, регламентирующая способ выполнения определенного класса функций. Взаимосвязь понятий интерфейса и протокола не всегда однозначна, так как практически любой интерфейс содержит в большей или меньшей степени элементы протокола, определяемые процедурами и функциональными характеристиками интерфейса.
Основное назначение интерфейсов, стыков и протоколов — унификация внутримашинных связей.
Различают несколько видов интерфейсов:
системные (внутрисистемные), которые являются базовой частью архитектуры ЭВМ и представляют собой совокупность унифицированной магистрали, электронных схем, управляющих прохождением сигналов по шинам, и т.п.;
периферийного оборудования, включающие универсальные (параллельный и последовательный) и специализированные интерфейсы (НМЛ, НМД и т.п.);
программируемых приборов, служащие для подключения нестандартной аппаратуры, измерительных и управляющих систем;
магистрально-модульных, микропроцессорных систем;
локальных вычислительных систем и т.п.
Понятия архитектуры, а также интерфейса связаны со следующими элементами, входящими в состав любой ЭВМ:
линии интерфейса — электрические цепи, являющиеся составными физическими связями интерфейса;
шина — совокупность линий, сгруппированных по функциональному назначению (шина адреса, шина команд, шина данных, шина состояния и т.п.);
магистраль — совокупность всех шин интерфейса.
Конструктивно (как правило) магистраль — это печатная плата, обеспечивающая соединение контактов разъемов, с помощью которых к магистрали подключаются различные устройства ЭВМ (то есть их интерфейсы).
С точки зрения шинной организации можно выделить два типа архитектур ЭВМ: машины с одношинной организацией (UNIBUS), имеющие общую (одну) магистраль для подключения всех устройств ЭВМ, и машины с многошинной организацией (MULTIBUS) и несколькими магистралями, например между ЦП и ОП одна магистраль, а между ПУ и ЦП — другая. Родоначальником промышленного внедрения общей шины является фирма DEC (Digital Eguipment Corporation) и применяется она, как правило, в мини-, микроЭВМ и персональных компьютерах, т.е. недорогих машинах, имеющих невысокую производительность. Такая архитектура очень проста и удобна с точки зрения программирования, так как все устройства ЭВМ напрямую связаны между собой (каждый связан с каждым).
Многошинная организация применяется в боль
Главным стимулом развития архитектуры ЭВМ является повышение производительности. Один из способов повышения производительности вычислительной техники — специализация (как отдельных элементов ЭВМ, так и создание специализированных вычислительных систем).
Специализация процессоров началась с 60-х годов, когда центральный процессор больших ЭВМ был освобожден от выполнения рутинной операции по вводу-выводу информации. Эта функция была передана процессору ввода-вывода, осуществляющему связь с периферийными устройствами.
Возможны три способа специализации в вычислительных машинах:
расширение системы команд универсальных ЭВМ общего назначения, включение команд вычисления часто встречаемых функций с возможной аппаратной реализацией;
использование периферийных процессоров, подключаемых к универсальным ЭВМ и реализующих некоторые вычислительные операции независимо от ЦП, например матричные процессоры, графические шины и т.п.;