Внутрение устроиство ПК

Автор работы: Пользователь скрыл имя, 22 Ноября 2013 в 08:51, реферат

Краткое описание

Кроме формы, для корпуса важен параметр, называемый форм-фактором. От него зависят требования к размещаемым устройствам. Прежним стандартом корпуса персональных компьютеров был форм-фактор Л Г, в настоящее время в основном используются корпуса форм-фактора АТХ. Форм-фактор корпуса должен быть обязательно согласован с форм-фактором главной (системной) платы компьютера, так называемой материнской платы (см. ниже). Корпуса персональных компьютеров поставляются вместе с блоком питания и, таким образом, мощность блока питания также является одним из параметров корпуса. Для массовых моделей достаточной является мощность блока питания 250-300 Вт.

Содержание

ВВЕДЕНИЕ 3
ГЛАВА1. ВНУТРЕННИЕ УСТРОЙСТВА СИСТЕМНОГО БЛОКА 4
1.1.МАТЕРИНСКАЯ ПЛАТА 4
1.2.ЖЕСТКИЙ ДИСК 5
1.4.ДИСКОВОД КОМПАКТ-ДИСКОВ CD-ROM 5
1.5.ВИДЕОКАРТА 6
1.6.ЗВУКОВАЯ КАРТА 7
ГЛАВА 2. СИСТЕМЫ, РАСПОЛОЖЕННЫЕ НА МАТЕРИНСКОЙ ПЛАТЕ 8
2.1.ОПЕРАТИВНАЯ ПАМЯТЬ 8
2.2.ПРОЦЕССОР 9
2.3.МИКРОСХЕМА ПЗУ И СИСТЕМА BIOS 12
2.4.ШИННЫЕ ИНТЕРФЕЙСЫ МАТЕРИНСКОЙ ПЛАТЫ 12
ЗАКЛЮЧЕНИЕ 16
СПИСОК ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА 17

Вложенные файлы: 1 файл

Внутренние устройства системного блока компьютера.doc

— 133.00 Кб (Скачать файл)

Таким образом, в современных компьютерах возможна непосредственная адресация к полю памяти размером 232 байт = 4 Гбайт. Однако это отнюдь не означает, что именно столько оперативной памяти непременно должно быть в компьютере. Предельный размер поля оперативной памяти, установленной в компьютере, определяется микропроцессорным комплектом (чипсетом) материнской платы и обычно не может превосходить нескольких Гбайт. Минимальный объем памяти определяется требованиями операционной системы и для современных компьютеров составляет 128 Мбайт.

Представление о том, сколько оперативной памяти должно быть в типовом компьютере, непрерывно меняется. В середине 80-х годов поле памяти размером 1 Мбайт казалось огромным, в начале 90-х годов достаточным считался объем 4 Мбайт, к середине 90-х годов он увеличился до 8 Мбайт, а затем и до 16 Мбайт. Сегодня типичным считается размер оперативной памяти в 256 Мбайт, но тенденция к росту сохраняется.

Оперативная память в компьютере размещается  на стандартных панельках, называемых модулями. Модули оперативной памяти вставляют в соответствующие разъемы на материнской плате. Если к разъемам есть удобный доступ, то операцию можно выполнять своими руками. Если удобного доступа нет, может потребоваться неполная разборка узлов системного блока, и в таких случаях операцию поручают специалистам.

Основными характеристиками модулей оперативной  памяти являются объем памяти и скорость передачи данных. Сегодня наиболее распространены модули объемом 128-512 Мбайт. Скорость передачи данных определяет максимальную пропускную способность памяти (в Мбайт/с или Гбайт/с) в оптимальном режиме доступа. При этом учитывается время доступа к памяти, ширина шины и дополнительные возможности, такие как передача нескольких сигналов за один такт работы. Одинаковые по объему модули могут иметь разные скоростные характеристики.

Иногда  в качестве определяющей характеристики памяти используют время доступа. Оно измеряется в миллиардных долях секунды {наносекундах, не). Для современных модулей памяти это значение может составлять 5 не, а для особо быстрой памяти, используемой в основном в видеокартах, — снижаться до 2-3 не.

2.2. ПРОЦЕССОР

Процессор —  основная микросхема компьютера, в  которой и производятся все вычисления. Конструктивно процессор состоит из ячеек, похожих на ячейки оперативной памяти, но в этих ячейках данные могут не только храниться, но и изменяться. Внутренние ячейки процессора называют регистрами. Важно также отметить, что данные, попавшие в некоторые регистры, рассматриваются не как данные, а как команды, управляющие обработкой данных в других регистрах. Среди регистров процессора есть и такие, которые в зависимости от своего содержания способны модифицировать исполнение команд. Таким образом, управляя засылкой данных в разные регистры процессора, можно управлять обработкой данных. На этом и основано исполнение программ.

С остальными устройствами компьютера, и в первую очередь с оперативной памятью, процессор связан несколькими группами проводников, называемых шинами. Основных шин три: шина данных, адресная шина и командная шина.

Адресная  шина. У процессоров семейства Pentium (а именно они наиболее распространены в персональных компьютерах) адресная шина 32-разрядная, то есть состоит из 32 параллельных проводников. В зависимости от того, есть напряжение на какой-то из линий или нет, говорят, что на этой линии выставлена единица или ноль. Комбинация из 32 нулей и единиц образует 32-разрядный адрес, указывающий на одну из ячеек оперативной памяти. К ней и подключается процессор для копирования данных из ячейки в один из своих регистров.

Шина  данных. По этой шине происходит копирование данных из оперативной памяти в регистры процессора и обратно. В современных персональных компьютерах шина данных, как правило, 64-разрядная, то есть состоит из 64 линий, по которым за один раз на обработку поступают сразу 8 байтов.

Шина  команд. Для того чтобы процессор мог обрабатывать данные, ему нужны команды. Он должен знать, что следует сделать с теми байтами, которые хранятся в его регистрах. Эти команды поступают в процессор тоже из оперативной памяти, но не из тех областей, где хранятся массивы данных, а оттуда, где хранятся программы. Команды тоже представлены в виде байтов. Самые простые команды укладываются в один байт, однако есть и такие, для которых нужно два, три и более байтов. В большинстве современных процессоров шина команд 32-разрядная, хотя существуют 64-разрядные процессоры и даже 128-разрядные.

Система команд процессора. В процессе работы процессор обслуживает данные, находящиеся  в его регистрах, в поле оперативной памяти, а также данные, находящиеся во внешних портах процессора. Часть данных он интерпретирует непосредственно как данные, часть данных — как адресные данные, а часть — как команды. Совокупность всех возможных команд, которые может выполнить процессор над данными, образует так называемую систему команд процессора. Процессоры, относящиеся к одному семейству, имеют одинаковые или близкие системы команд. Процессоры, относящиеся к разным семействам, различаются по системе команд и невзаимозаменяемы.

Процессоры  с расширенной и сокращенной  системой команд. Чем шире набор системных команд процессора, тем сложнее его архитектура, тем длиннее формальная запись команды (в байтах), тем выше средняя продолжительность исполнения одной команды, измеренная в тактах работы процессора. Так, например, система команд процессоров семейства Pentium в настоящее время насчитывает более тысячи различных команд. Такие процессоры называют процессорами с расширенной системой команд — CISC-процессорами (CISC — Complex Instruction Set Computing).

В противоположность C/SC-процессорам в середине 80-х годов появились процессоры архитектуры RISC с сокращенной системой команд (RISC — Reduced Instruction Set Computing). При такой архитектуре количество команд в системе намного меньше и каждая из них выполняется намного быстрее. Таким образом, программы, состоящие из простейших команд, выполняются этими процессорами много быстрее. Оборотная сторона сокращенного набора команд состоит в том, что сложные операции приходится эмулировать далеко не эффективной последовательностью простейших команд сокращенного набора.

В результате конкуренции между двумя подходами  к архитектуре процессоров сложилось следующее распределение их сфер применения:

  • CISC-процессоры используют в универсальных вычислительных системах;
  • RISC-процессоры используют в специализированных вычислительных системах 
    или устройствах, ориентированных на выполнение единообразных операций.

Персональные  компьютеры платформы IBM PC ориентированы на использование CISC-процессоров.

Совместимость процессоров. Если два процессора имеют  одинаковую систему команд, то они полностью совместимы на программном уровне. Это означает, что программа, написанная для одного процессора, может исполняться и другим процессором. Процессоры, имеющие разные системы команд, как правило, несовместимы или ограниченно совместимы на программном уровне.

Группы  процессоров, имеющих ограниченную совместимость, рассматривают как семейства процессоров. Так, например, все процессоры Intel Pentium относятся к так называемому семейству х86. Родоначальником этого семейства был 16-разрядный процессор Intel 8086, на базе которого собиралась первая модель компьютера IBM PC. Впоследствии выпускались процессоры Intel 80286, Intel 80386, Intel 80486, несколько моделей Intel Pentium] несколько моделей Intel Pentium MMX, модели Intel Pentium Pro, Intel Pentium II, Intel Celeron, IntelXeon, Intel Pentium III, Intel Pentium 4 и другие. Все эти модели, и не только они, а также многие модели процессоров компании AMD и некоторых других производителей относятся к семейству х86 обладают совместимостью по принципу «сверху вниз».

Принцип совместимости  «сверху вниз» — это пример неполной совместимости когда каждый новый процессор «понимает» все  команды своих предшественников но не наоборот. Это естественно, поскольку двадцать лет назад разработчики процессоров не могли предусмотреть систему команд, нужную для современных про грамм. Благодаря такой совместимости на современном компьютере можно выполнять любые программы, созданные в последние десятилетия для любого и предшествующих компьютеров, принадлежащего той же аппаратной платформе

Основные параметры  процессоров. Основными параметрами  процессоров являются: рабочее напряжение, разрядность, рабочая тактовая частота, коэффициент внутреннего умножения тактовой частоты и размер кэш-памяти.

В основе работы процессора лежит тот же тактовый принцип, что и в обычных часах. Исполнение каждой команды занимает определенное количество тактов. В настенных часах такты колебаний задает маятник; в ручных механических часах их задает пружинный маятник; в электронных часах для этого есть колебательный контур, задающий такты строго определенной частоты. В персональном компьютере тактовые импульсы задает одна из микросхем, входящая в микропроцессорный комплект (чипсет), расположенный на материнской плате. Чем выше частота тактов, поступающих на процессор, тем больше команд он может исполнить в единицу времени, тем выше его производительность. Первые процессоры х86 могли

работать  с частотой не выше 4,77 МГц, а сего дня рабочие частоты некоторых процессоров уже превосходят 3 миллиарда тактов в секунду (3 ГГц).

2.3. МИКРОСХЕМА ПЗУ И СИСТЕМА BIOS

В момент включения компьютера в его оперативной  памяти нет ничего — ни данных, ни программ, поскольку оперативная память не может ничего хранить без подзарядки ячеек более сотых долей секунды, но процессору нужны команды, в том числе и в первый момент после включения. Поэтому сразу после включения на адресной шине процессора выставляется стартовый адрес. Это происходит аппаратно, без участия программ (всегда одинаково). Процессор обращается по выставленному адресу за своей первой командой и далее начинает работать по программам.

Этот  исходный адрес не может указывать  на оперативную память, в которой  пока ничего нет. Он указывает на другой тип памяти — постоянное запоминающее устройство (ПЗУ). Микросхема ПЗУ способна длительное время хранить информацию, даже когда компьютер выключен. Программы, находящиеся в ПЗУ, называют «зашитыми» — их записывают туда на этапе изготовления микросхемы.

2.4. ШИННЫЕ ИНТЕРФЕЙСЫ МАТЕРИНСКОЙ ПЛАТЫ

Связь между  всеми собственными и подключаемыми  устройствами материнской платы выполняют ее шины и логические устройства, размещенные в микросхемах микропроцессорного комплекта (чипсета). От архитектуры этих элементов во многом зависит производительность компьютера.

ISA. Историческим достижением компьютеров платформы IBM PC стало внедрение почти двадцать лет назад архитектуры, получившей статус промышленного стандарта ISA (Industry Standard Architecture). Она не только позволила связать все устройства системного блока между собой, но и обеспечила простое подключение новых устройств через стандартные разъемы (слоты). Пропускная способность шины, выполненной по такой архитектуре, составляет до 5,5 Мбайт/с, но, несмотря на низкую пропускную способность, эта шина еще может использоваться в некоторых компьютерах для подключения сравнительно «медленных» внешних устройств, например звуковых карт и модемов.

EISA. Расширением стандарта ISA стал стандарт EISA (Extended ISA), отличающийся увеличенным разъемом и увеличенной производительностью (до 32 Мбайт/с). Как и ISA, в настоящее время данный стандарт считается устаревшим. После 2000 года выпуск материнских плат с разъемами ISA/EISA и устройств, подключаемых к ним, практически прекращен.

VLB. Название интерфейса переводится как локальная шина стандарта VESA (VESA Local Bus). Понятие «локальной шины» впервые появилось в конце 80-х годов. Оно связано тем, что при внедрении процессоров третьего и четвертого поколений (Intel 80386 и Intel 80486) частоты основной шины (в качестве основной использовалась шина IS A/EISA ) стало недостаточно для обмена между процессором и оперативной памятью. Локальная шина, имеющая повышенную частоту, связала между собой процессор и память в обход основной шины. Впоследствии в эту шину «врезали» интерфейс для подключения видеоадаптера, который тоже требует повышенной пропускной способности, — так появился стандарт VLB, который позволил поднять тактовую частоту локальной шины до 50 МГц и обеспечил пиковую пропускную способность до 130 Мбайт/с.

Основным  недостатком интерфейса VLB стало то, что предельная частота локальной шины и, соответственно, ее пропускная способность зависят от числа устройств, подключенных к шине. Так, например, при частоте 50 МГц к шине может быть подключено только одно устройство (видеокарта). Для сравнения скажем, что при частоте 40 МГц возможно подключение двух, а при частоте 33 МГц — трех устройств. Активное использование шины VLB продолжалось очень недолго, она была вскоре вытеснена шиной PCL

PCI. Интерфейс PCI (Peripheral Component Interconnect — стандарт подключения внешних компонентов) был введен в персональных компьютерах во времена процессора 80486 и первых версий Pentium. По своей сути это тоже интерфейс локальной шины, связывающей процессор с оперативной памятью, в которую врезаны разъемы для подключения внешних устройств. Для связи с основной шиной компьютера (ISA/EISA) используются специальные интерфейсные преобразователи -мосты PCI (PCI Bridge). В современных компьютерах функции моста PCI выполняют микросхемы микропроцессорного комплекта (чипсета).

Данный  интерфейс поддерживает частоту  шины 33 МГц и обеспечивает пропускную способность 132 Мбайт/с. Последние версии интерфейса поддерживают частоту до 66 МГц и обеспечивают производительность 264 Мбайт/с для 32-разрядных данных и 528 Мбайт/с для 64-разрядных данных.

Важным нововведением, реализованным этим стандартом, стала  поддержка так называемого режима plug-and-play, впоследствии оформившегося в промышленный стандарт на самоустанавливающиеся устройства. Его суть состоит в том, что после физического подключения внешнего устройства к разъему шины PCI происходит обмен данными между устройством и материнской платой, в результате которого устройство автоматически получает номер используемого прерывания, адрес порта подключения и номер канала прямого доступа к памяти.

Информация о работе Внутрение устроиство ПК