Автор работы: Пользователь скрыл имя, 16 Ноября 2011 в 13:32, курсовая работа
Цель исследования – изучить историю и перспективы развития устройств хранения информации в современном мире.
Задачи: рассмотреть понятие памяти, ее виды;
рассмотреть понятие устройств хранения информации, их виды, принципы записи, хранение, считывание, основные пользовательские характеристики;
изучить историю и дальнейшие перспективы развития устройств хранения информации.
Введение 3
1. Память компьютера. внешние запоминающие устройства 4
1.1 Память компьютера и ее виды 4
1.2. Внешняя память компьютера 5
1.2.1. Магнитные дисковые накопители 6
1.2.2. .Жесткие диски (винчестеры) 8
1.2.3. Накопитель на гибких магнитных дисках 12
1.2.4. CD-ROM 14
1.2.5. DVD 18
1.2.6. Флэш-память 19
1.2.7. Голографические устройства 19
1.2.8. MODS-диски 20
2. История и перспективы развития устройств хранения информации 22
2.1. История развития устройств хранения информации 22
2.2. Перспективы развития устройств хранения информации 27
Заключение 32
Список использованной литературы 34
Приложение 1 35
Магнитооптические системы используют в своей работе полярный эффект Керра. При этом информация об ориентации намагниченности домена получается при анализе степени вращения плоскости поляризации лазерного луча при отражении от пленки (около 0,3°). Первые такие системы использовали ферримагнитные аморфные сплавы редкоземельных и переходных металлов, обладающие перпендикулярной магнитной анизотропией. Состав пленок подбирается таким образом, чтобы температура, при которой происходит переагничивание домена, была близка к точке магнитной компенсации или точке Кюри, где величина Нс значительно уменьшается. Эффективными составами для магнитооптической записи считаются GdFe, TbCo, TbFe, TbFeCo, Co/Pt, Co/Pd и др.
В настоящее время существуют, например, 5,25-дюймовые перезаписываемые удаляемые (переносные) магнитооптические диски емкостью до 2,3 Гбай-та, 14-дюймовые двухсторонние диски имеют емкость 12 Гбайт. Предполагается, что в ближайшее время цифра возрастет до 20 Гбайт даже для 5,25-дюймового диска (при двухсторонней записи).
Для осуществления записи необходимо выполнение ряда магнитных, термомагнитных и магнитооптических требований: направление магнитного момента домена должно быть перпендикулярно плоскости пленки; распределение намагниченности по пленке должно быть устойчиво к воздействию размагничивающих полей и малых температурных колебаний; в материале должна существовать регулярная и воспроизводимая доменная структура с размером домена около 1 мкм: возможность уменьшения коэрцитивной силы по величине приблизительно на порядок при нагревании; отсутствие изменений в соседних доменах при нагреве (сравнительно плохая теплопроводность); достаточная (для считывания) величина полярного эффекта Керра: максимально возможное отношение сигнала к шуму (более 25 дБ) во всем рабочем интервате температур и т.д.10
Важными
направлениями научных
Учеными
разрабатываются несколько
Активно разрабатываются устройства, позволяющие проводить запись и считывание информации в объеме материала, то есть осуществлять трехмерное хранение информации. Использование трехмерной (3.0-память) оптической памяти позволит записывать до 1012 бит на 1 см3. Место бита в объеме материала может быть определено с помощью простых пространственных, спектральных или временных координат. Так, например, при голографической записи, концепция которой возникла еще в 1960-х годах, информация хранится в толще среды как «страницы» электронных изображений.
Если упомянутые нами выше DVD имеют на каждой стороне лишь по два слоя записи информации, то развиваемая сейчас двухфотонная технология записи позволяет использовать по нескольку сот слоев на каждой стороне диска (созданные прототипы имеют 100 слоев при толщине 8 мм). При этом методе записи атом или молекула могут перейти из одного энергетического состояния в другое только при одновременной абсорбции двух фотонов. Использование двух лазерных лучей позволяет легко варьировать месторасположение бита информации в толще материала. Индуцированные изменения при этом могут быть зафиксированы как изменения абсорбции, флуоресценции, отражательной способности или электрических свойств материала в точке расположения бита. Такая технология позволит сохранять до 100 Гбайт информации на одном диске того же, что и CD и DVD, размера. Одной из перспективных сред, которая может, например, абсорбировать или флуоресцировать при записи битов, является материал spirobenzopyran. Однако при комнатной температуре записанная в нем информация может храниться не более 20 часов. Неограниченно долго данный материал может сохранять информацию только при температуре -32°С, то есть при температуре сухого льда. Исследуется также возможность использования для двухфотонной записи фотохромного протеина bacteriorhodopsin и нитронафтиальдегида (rhodamine В).
Ведутся также исследования новых возможностей трехмерной записи информации, делающих ее в некотором смысле четырехмерной. При этом способе записи предлагается помимо обычной использовать также такую информацию о каждой точке записи, как длина волны, время или молекулярная структура (например, записывать информацию в одной и той же точке пространства на разных длинах волн). Таким образом, можно будет записывать до 100 бит информации в одной точке пространства микронного размера.
Однако чисто оптические методы записи, в которых среда для записи расположена на заметном расстоянии от лазера, имеют одно важное ограничение — минимальный размер бита записываемой информации ограничен величиной λ/2. Это обусловлено дифракционными ограничениями. Даже при использовании голубого твердотельного лазера линейный размер одного бита информации может быть лишь около 215 нм. Хотя принципиальных ограничений на создание твердотельных лазеров с длиной волны менее 400 нм нет, но трудности создания хорошо управляемых компактных лазеров заметно возрастают при дальнейшем уменьшении длины волны. Таким образом, следует ожидать, что в случае даже полного развития трехмерной памяти и при использовании голубого лазера чисто оптические методы позволят записывать в одном кубическом сантиметре не более 10'4—1015 бит информации. Для достижения в компьютерах плотности записи 10'4/см3 понадобится не менее 15—20 лет.
В
настоящее время
Обещающим
кажется и использование
Однако
в отличие от разработок технологии
магнитной памяти доведение данных работ
до промышленного прототипа требует огромных
финансовых затрат. В то же время проведенные
к настоящему времени исследования магнитного
метода записи уже сейчас позволяют увеличивать
плотности записи в два раза за один год.
Дальнейшее развитие магнитной памяти
не требует чрезмерно больших затрат.
Цена одного мегабайта магнитной информации
уже сейчас снизилась приблизительно
в 500 раз от начальной его цены и не превышает
нескольких десятых цента. Таким образом,
можно предположить, что в ближайшие 7—10
лет магнитные материалы будут оставаться
наиболее используемой средой для записи
информации (по крайней мере для жестких
дисков компьютеров) и в ближайшем будущем
будут успешно конкурировать с чисто оптическими
и другими методами11.
Подведем итоги изученному в курсовой работе.
Внешняя
память предназначена для
Скорость обмена информацией зависит от скорости ее считывания или записи на носитель, что определяется, в свою очередь, скоростью вращения или перемещения этого носителя в устройстве.
Устройства внешней памяти - это, прежде всего, магнитные устройства для хранения информации. По способу записи и чтения накопители делятся, в зависимости от вида носителя, на магнитные, оптические и магнитооптические.
Раньше в вычислительной технике к внешним устройствам (ВЗУ) относили устройства хранения дискретной информации, главным образом, на магнитных лентах, барабанах, дисках.
Уже совсем скоро на рынке устройств хранения информации появится новинка - это будет устройство для накопления информации на специальных дисках наподобие CD. Они будут поддерживать стандарт DVD и иметь емкость 4.72 Гбайт, причем на них можно будет и записывать информацию и естественно считывать не один раз. Эта разработка совершит переворот в теории хранения и накопления информации. Это время уже совсем близко.
Научно
обоснованные прогнозы утверждают, что
совершенствование электронной техники
и применение новых высокоэффективных
накопительных сред в сочетании с широким
использованием методов бионики при решении
проблем, связанных с синтезом запоминающих
устройств, позволят создавать запоминающие
устройства, близкие по параметрам памяти
человека.
Виды
памяти
Приложение 2
Основные
пользовательские характеристики
ВЗУ
Характеристики | МО | CD-RW | DVD | Дискета | Стримерная лента | JAZ | ZIP |
Проблема хранения | Солнечный свет | Размагничивание, различные влияния | Застревание и разрыв | Влияние полей | |||
Срок
хранения: - Гарантия - Теория |
50 150 |
50 100 |
50 100 |
5 15 |
20 40 |
10 50 |
8 46 |
Проблемы с драйверами | + | - | + | - | - | - | - |
Ошибки записи | - | + | - | + | + | - | + |
Циклы перезаписи | 10000000 | 1000 | 1000 | 100-200 | 800 | 10000 | 1000 |
Максимальная емкость | 9,1 (5,25) 2,6 (3,5) |
700iv | |||||
Цена устройства (в среднем, $) | 400 | 200 | 400 | 20 | 800 | 500 | 150 |
Распространенность в РФ | Средняя | Высокая | Низкая | Сверхвысокая | Низкая | Очень низкая | Средняя |
Информация о работе История и перспективы развития устройств хранения информации