История и перспективы развития устройств хранения информации

Автор работы: Пользователь скрыл имя, 16 Ноября 2011 в 13:32, курсовая работа

Краткое описание

Цель исследования – изучить историю и перспективы развития устройств хранения информации в современном мире.
Задачи: рассмотреть понятие памяти, ее виды;
рассмотреть понятие устройств хранения информации, их виды, принципы записи, хранение, считывание, основные пользовательские характеристики;
изучить историю и дальнейшие перспективы развития устройств хранения информации.

Содержание

Введение 3
1. Память компьютера. внешние запоминающие устройства 4
1.1 Память компьютера и ее виды 4
1.2. Внешняя память компьютера 5
1.2.1. Магнитные дисковые накопители 6
1.2.2. .Жесткие диски (винчестеры) 8
1.2.3. Накопитель на гибких магнитных дисках 12
1.2.4. CD-ROM 14
1.2.5. DVD 18
1.2.6. Флэш-память 19
1.2.7. Голографические устройства 19
1.2.8. MODS-диски 20
2. История и перспективы развития устройств хранения информации 22
2.1. История развития устройств хранения информации 22
2.2. Перспективы развития устройств хранения информации 27
Заключение 32
Список использованной литературы 34
Приложение 1 35

Вложенные файлы: 1 файл

Устройства хранения информации.doc

— 197.00 Кб (Скачать файл)
stify">     Логическим  продолжением этих работ стало развитие магнитооптического способа записи информации. Помимо обсуждаемой выше продольной записи, которая используется при создании магнитной памяти, существует также и перпендикулярная запись, при которой вектор намагниченности доменов ориентирован перпендикулярно к плоскости диска. Такой тип записи применяется в магнитооптических системах памяти. Первая коммерческая версия магнитооптической системы была выпущена только в 1994 году.

     Магнитооптические системы используют в своей работе полярный эффект Керра. При этом информация об ориентации намагниченности домена получается при анализе степени вращения плоскости поляризации лазерного луча при отражении от пленки (около 0,3°). Первые такие системы использовали ферримагнитные аморфные сплавы редкоземельных и переходных металлов, обладающие перпендикулярной магнитной анизотропией. Состав пленок подбирается таким образом, чтобы температура, при которой происходит переагничивание домена, была близка к точке магнитной компенсации или точке Кюри, где величина Нс значительно уменьшается. Эффективными составами для магнитооптической записи считаются GdFe, TbCo, TbFe, TbFeCo, Co/Pt, Co/Pd и др.

     В настоящее время существуют, например, 5,25-дюймовые перезаписываемые удаляемые (переносные) магнитооптические диски емкостью до 2,3 Гбай-та, 14-дюймовые двухсторонние диски имеют емкость 12 Гбайт. Предполагается, что в ближайшее время цифра возрастет до 20 Гбайт даже для 5,25-дюймового диска (при двухсторонней записи).

     Для осуществления записи необходимо выполнение ряда магнитных, термомагнитных и магнитооптических требований: направление магнитного момента домена должно быть перпендикулярно плоскости пленки; распределение намагниченности по пленке должно быть устойчиво к воздействию размагничивающих полей и малых температурных колебаний; в материале должна существовать регулярная и воспроизводимая доменная структура с размером домена около 1 мкм: возможность уменьшения коэрцитивной силы по величине приблизительно на порядок при нагревании; отсутствие изменений в соседних доменах при нагреве (сравнительно плохая теплопроводность); достаточная (для считывания) величина полярного эффекта Керра: максимально возможное отношение сигнала к шуму (более 25 дБ) во всем рабочем интервате температур и т.д.10

     2.2. Перспективы развития устройств хранения информации

     Важными направлениями научных исследований в этой области является изучение эффектов, влияющих на сверхплотную запись информации, таких, как тепловые ограничения, так называемые магнитные временные эффекты и флуктуации различного характера. Однако проблема заключается не только в том, какую среду использовать для записи информации, но и каким образом эту информацию записать и считать с данного носителя. Например, если для записи и считывания информации непосредственно использовать луч лазера, то размер одного бита информации не может быть существенно меньше половины длины волны. Цифровые видеодиски уже используют красный лазер сλ  ≈ 630—635 нм, недалекая перспектива в этой области — широкое использование голубого полупроводникового GaN-лазера с длиной волны 410—415 нм.

     Учеными разрабатываются несколько оптических методов записи и хранения информации. К наиболее известному из них можно  отнести так называемую DVD-технологию, которая уже частично пришла на смену обычным CD. Использование DVD-носителей позволяет выпускать, например, двухчасовые видеофильмы, записанные на одном диске. Большое внимание исследователей привлекает оптическая память ближнего поля. Оптика ближнего поля использует тот факт, что свет может проходить сквозь отверстия гораздо меньшего размера, чем длина волны λ. Однако свет при этом может распространяться на очень короткую дистанцию — так называемую область ближнего поля. Ученые предлагают реализовать данную схему путем, например, перфорирования отверстия диаметром около 250 нм на покрытом металлом конце лазерного диода. Технология же самой записи заключается в использовании летающей на малой высоте от подложки оптической головки, содержащей записывающее кольцо для магнитной записи и два оптических элемента. Одним из этих элементов является твердая иммерсионная линза. Линза используется для фокусировки лазерного луча в пятно ультрамалого размера, которое затем проецируется на поверхность диска. По некоторым оценкам, уменьшение размера отверстия на лазере до 30 нм может позволить достичь плотности записи более чем 80 Гбит/см2.

     Активно разрабатываются устройства, позволяющие проводить запись и считывание информации в объеме материала, то есть осуществлять трехмерное хранение информации. Использование трехмерной (3.0-память) оптической памяти позволит записывать до 1012 бит на 1 см3. Место бита в объеме материала может быть определено с помощью простых пространственных, спектральных или временных координат. Так, например, при голографической записи, концепция которой возникла еще в 1960-х годах, информация хранится в толще среды как «страницы» электронных изображений.

     Если  упомянутые нами выше DVD имеют на каждой стороне лишь по два слоя записи информации, то развиваемая сейчас двухфотонная технология записи позволяет использовать по нескольку сот слоев на каждой стороне диска (созданные прототипы имеют 100 слоев при толщине 8 мм). При этом методе записи атом или молекула могут перейти из одного энергетического состояния в другое только при одновременной абсорбции двух фотонов. Использование двух лазерных лучей позволяет легко варьировать месторасположение бита информации в толще материала. Индуцированные изменения при этом могут быть зафиксированы как изменения абсорбции, флуоресценции, отражательной способности или электрических свойств материала в точке расположения бита. Такая технология позволит сохранять до 100 Гбайт информации на одном диске того же, что и CD и DVD, размера. Одной из перспективных сред, которая может, например, абсорбировать или флуоресцировать при записи битов, является материал spirobenzopyran. Однако при комнатной температуре записанная в нем информация может храниться не более 20 часов. Неограниченно долго данный материал может сохранять информацию только при температуре -32°С, то есть при температуре сухого льда. Исследуется также возможность использования для двухфотонной записи фотохромного протеина bacteriorhodopsin и нитронафтиальдегида (rhodamine В).

     Ведутся также исследования новых возможностей трехмерной записи информации, делающих ее в некотором смысле четырехмерной. При этом способе записи предлагается помимо обычной использовать также такую информацию о каждой точке записи, как длина волны, время или молекулярная структура (например, записывать информацию в одной и той же точке пространства на разных длинах волн). Таким образом, можно будет записывать до 100 бит информации в одной точке пространства микронного размера.

     Однако  чисто оптические методы записи, в  которых среда для записи расположена на заметном расстоянии от лазера, имеют одно важное ограничение — минимальный размер бита записываемой информации ограничен величиной λ/2. Это обусловлено дифракционными ограничениями. Даже при использовании голубого твердотельного лазера линейный размер одного бита информации может быть лишь около 215 нм. Хотя принципиальных ограничений на создание твердотельных лазеров с длиной волны менее 400 нм нет, но трудности создания хорошо управляемых компактных лазеров заметно возрастают при дальнейшем уменьшении длины волны. Таким образом, следует ожидать, что в случае даже полного развития трехмерной памяти и при использовании голубого лазера чисто оптические методы позволят записывать в одном кубическом сантиметре не более 10'4—1015 бит информации. Для достижения в компьютерах плотности записи 10'4/см3 понадобится не менее 15—20 лет.

     В настоящее время разрабатываются  и другие виды оптической памяти, использующей, например, в качестве носителя информации уже отдельные молекулы или предлагающие перейти к многоуровневой логике вместо общепринятой сейчас бинарной.

     Обещающим кажется и использование термомеханических процессов для считывания и записи информации на тонких полимерных органических пленках. Ученые компании IBM предлагают использовать для этого так называемый millipede — тысячи кантилеверов (чувствительных элементов), закрепленных на одной кремневой похтожке, причем каждый из кантилеверов может записывать и считывать информацию на/с полимерной среды.

     Однако  в отличие от разработок технологии магнитной памяти доведение данных работ до промышленного прототипа требует огромных финансовых затрат. В то же время проведенные к настоящему времени исследования магнитного метода записи уже сейчас позволяют увеличивать плотности записи в два раза за один год. Дальнейшее развитие магнитной памяти не требует чрезмерно больших затрат. Цена одного мегабайта магнитной информации уже сейчас снизилась приблизительно в 500 раз от начальной его цены и не превышает нескольких десятых цента. Таким образом, можно предположить, что в ближайшие 7—10 лет магнитные материалы будут оставаться наиболее используемой средой для записи информации (по крайней мере для жестких дисков компьютеров) и в ближайшем будущем будут успешно конкурировать с чисто оптическими и другими методами11. 
 
 
 
 
 
 
 

 

     

     Заключение

     Подведем  итоги изученному в курсовой работе.

     Внешняя память предназначена для долговременного  хранения программ и данных. Устройства внешней памяти (накопители) являются энергонезависимыми, выключение питания не приводит к потере данных. Они могут быть встроены в системный блок или выполнены в виде самостоятельных блоков, связанных с системным через его порты. Важной характеристикой внешней памяти служит ее объем. Объем внешней памяти можно увеличивать, добавляя новые накопители. Не менее важными характеристиками внешней памяти являются время доступа к информации и скорость обмена информацией. Эти параметры зависят от устройства считывания информации и организации типа доступа к ней.

     Скорость  обмена информацией зависит от скорости ее считывания или записи на носитель, что определяется, в свою очередь, скоростью вращения или перемещения этого носителя в устройстве.

     Устройства  внешней памяти - это, прежде всего, магнитные устройства для хранения информации. По способу записи и чтения накопители делятся, в зависимости от вида носителя, на магнитные, оптические и магнитооптические.

     Раньше  в вычислительной технике к внешним  устройствам (ВЗУ) относили устройства хранения дискретной информации, главным  образом, на магнитных лентах, барабанах, дисках.

        Уже совсем скоро на рынке устройств хранения информации появится новинка - это будет устройство для накопления информации на специальных дисках наподобие CD. Они будут поддерживать стандарт DVD и иметь емкость 4.72 Гбайт, причем на них можно будет и записывать информацию и естественно считывать не один раз. Эта разработка совершит переворот в теории хранения и накопления информации. Это время уже совсем близко.

     Научно  обоснованные прогнозы утверждают, что  совершенствование электронной техники и применение новых высокоэффективных накопительных сред в сочетании с широким использованием методов бионики при решении проблем, связанных с синтезом запоминающих устройств, позволят создавать запоминающие устройства, близкие по параметрам памяти человека. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Список  использованной литературы

 
  1. Альянах И. Н. Внешние запоминающие устройства. М, 1991.
  2. Батыгов М., Денисов О. Накопители на жестких магнитных дисках.  М., 2001.
  3. Гиляровский Р.С. Основы информатики. – М.: Экзамен, 2003.
  4. Гук. М. Аппаратные средства IBM PC. Энциклопедия. – СПб: Питер, 2001.
  5. Извозчиков В.А. Информатика в понятиях и терминах. - М.: Просвещение, 1997.
  6. Информатика / Под ред. Н.В. Макаровой. М., 2002.
  7. Козырев А.А. Информатика. – М.: Издательство Михайлова, 2003.
  8. Лебедев О. Н. Микросхемы памяти и их применение. М., 1990.
  9. Леонтьев В.П. Новейшая энциклопедия ПК. – М.: Проспект, 2003.
  10. Основы современных технологий / Под ред. Хоманенко А.Д. Гофмана В.Э. Мальцевой П.Б. М., 1998.
  11. Острейковский В.А. Информатика. – М.: Высшая школа, 2005.
  12. Современные информационные технологии и сети. Юнита 2. – М.: Современный гуманитарный университет, 2001.
  13. Угринович Н. Информатика и информационные технологии. — М.: БИНОМ, 2001.
  14. Фигурнов В.Э. IBM PC для пользователя. М., 2003.
  15. Бирюков В. Прибавь обороты // Компьютера.- 2004. - №5.
  16. Симонов С. Семь тысяч двести // Компьютера. – 1999. - №32.
  17. Тишин А.М. Память современных компьютеров. – М.: Московский государственный университет им. Ломоносова, 2001.

Приложение 1

Виды  памяти 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Приложение 2

Основные  пользовательские характеристики ВЗУ 
 

Характеристики МО CD-RW DVD Дискета Стримерная  лента JAZ ZIP
Проблема  хранения   Солнечный свет   Размагничивание, различные влияния Застревание и  разрыв   Влияние полей
Срок  хранения: 
- Гарантия 
- Теория
50 
150
50 
100
50 
100

15
20 
40
10 
50

46
Проблемы  с драйверами + - + - - - -
Ошибки  записи - + - + + - +
Циклы перезаписи 10000000 1000 1000 100-200 800 10000 1000
Максимальная  емкость 9,1 (5,25) 
2,6 (3,5)
700iv          
Цена  устройства (в среднем, $) 400 200 400 20 800 500 150
Распространенность  в РФ Средняя Высокая Низкая Сверхвысокая Низкая Очень низкая Средняя

Информация о работе История и перспективы развития устройств хранения информации