Автор работы: Пользователь скрыл имя, 16 Мая 2015 в 19:58, контрольная работа
Задание 1. Охарактеризуйте особенности экономической информации.
Ответ: Экономическая информация, представляет собой совокупность различных сведений экономического характера, которые можно фиксировать, передавать, обрабатывать, хранить и использовать в процессе планирования, учета, контроля, анализа на всех уровнях отраслевого и регионального управления народным хозяйством.
Концепция хранилищ данных предполагает не просто единый логический взгляд на данные организации, а действительную реализацию единого интегрированного источника данных. Альтернативным по отношению к этой концепции способом формирования единого взгляда на корпоративные данные является создание виртуального источника, опирающегося на распределенные базы данных различных СОД. При этом каждый запрос к такому источнику динамически транслируется в запросы к исходным базам данных, а полученные результаты на лету согласовываются, связываются, агрегируются и возвращаются к пользователю. Однако, при внешней элегантности, такой способ обладает рядом существенных недостатков.
Время обработки запросов к распределенному хранилищу значительно превышает соответствующие показатели для централизованного хранилища. Кроме того, структуры баз данных СОД, рассчитанные на интенсивное обновление одиночных записей, в высокой степени нормализованы, поэтому в аналитическом запросе к ним требуется объединение большого числа таблиц, что также приводит к снижению быстродействия.
Интегрированный взгляд на распределенное корпоративное хранилище возможен только при выполнении требования постоянной связи всех источников данных в сети. Таким образом, временная недоступность хотя бы одного из источников может либо сделать работу информационно-аналитической системы (ИАС) невозможной, либо привести к ошибочным результатам.
Выполнение сложных аналитических запросов над таблицами СОД потребляет большой объем ресурсов сервера БД и приводит к снижению быстродействия СОД, что недопустимо, так как время выполнения операций в СОД часто весьма критично.
Различные СОД могут поддерживать разные форматы и кодировки данных, данные в них могут быть несогласованны. Очень часто на один и тот же вопрос может быть получено несколько вариантов ответа, что может быть связано с несинхронностью моментов обновления данных, отличиями в трактовке отдельных событий, понятий и данных, изменением семантики данных в процессе развития предметной области, ошибками при вводе, утерей фрагментов архивов и т. д. В таком случае цель - формирование единого непротиворечивого взгляда на объект управления - может не быть достигнута.
Главным же недостатком следует признать практическую невозможность обзора длительных исторических последовательностей, ибо при физическом отсутствии центрального хранилища доступны только те данные, которые на момент запроса есть в реальных БД связанных СОД. Основное назначение СОД - оперативная обработка данных, поэтому они не могут позволить себе роскошь хранить данные за длительный (более нескольких месяцев) период; по мере устаревания данные выгружаются в архив и удаляются из транзакционной БД. Что касается аналитической обработки, для нее как раз наиболее интересен взгляд на объект управления в исторической ретроспективе.
Таким образом, хранилище данных функционирует по следующему сценарию. По заданному регламенту в него собираются данные из различных источников - баз данных систем оперативной обработки. В хранилище поддерживается хронология: наравне с текущими хранятся исторические данные с указанием времени, к которому они относятся. В результате необходимые доступные данные об объекте управления собираются в одном месте, приводятся к единому формату, согласовываются и, в ряде случаев, агрегируются до минимально требуемого уровня обобщения.
На основе хранилища данных возможно составление отчетности для руководства, анализ данных с помощью OLAP-технологий и интеллектуальный анализ данных (Data Mining).
OLAP-технологии
В основе концепции оперативной аналитической обработки (OLAP) лежит многомерное представление данных. Термин OLAP ввел E. F. Codd в 1993 году. В своей статье он рассмотрел недостатки реляционной модели, в первую очередь невозможность «объединять, просматривать и анализировать данные с точки зрения множественности измерений, то есть самым понятным для корпоративных аналитиков способом», и определил общие требования к системам OLAP, расширяющим функциональность реляционных СУБД и включающим многомерный анализ как одну из своих характеристик.
По Кодду, многомерное концептуальное представление (multi-dimensional conceptual view) является наиболее естественным взглядом управляющего персонала на объект управления. Оно представляет собой множественную перспективу, состоящую из нескольких независимых измерений, вдоль которых могут быть проанализированы определенные совокупности данных. Одновременный анализ по нескольким измерениям данных определяется как многомерный анализ. Каждое измерение включает направления консолидации данных, состоящие из серии последовательных уровней обобщения, где каждый вышестоящий уровень соответствует большей степени агрегации данных по соответствующему измерению. Так, измерение Исполнитель может определяться направлением консолидации, состоящим из уровней обобщения «предприятие - подразделение - отдел - служащий». Измерение Время может даже включать два направления консолидации - «год - квартал - месяц - день» и «неделя - день», поскольку счет времени по месяцам и по неделям несовместим. В этом случае становится возможным произвольный выбор желаемого уровня детализации информации по каждому из измерений. Операция спуска (drilling down) соответствует движению от высших ступеней консолидации к низшим; напротив, операция подъема (rolling up) означает движение от низших уровней к высшим.
Интеллектуальный анализ данных
Наибольший интерес в СППР представляет интеллектуальный анализ данных, так как он позволяет провести наиболее полный и глубокий анализ проблемы, дает возможность обнаружить скрытые взаимосвязи, принять наиболее обоснованное решение.
Современный уровень развития аппаратных и программных средств с некоторых пор сделал возможным повсеместное ведение баз данных оперативной информации на разных уровнях управления. В процессе своей деятельности промышленные предприятия, корпорации, ведомственные структуры, органы государственной власти и местного самоуправления накопили большие объемы данных. Они хранят в себе большие потенциальные возможности по извлечению полезной аналитической информации, на основе которой можно выявлять скрытые тенденции, строить стратегию развития, находить новые решения. Интеллектуальный анализ данных (Data Mining) -- это процесс поддержки принятия решений, основанный на поиске в данных скрытых закономерностей (шаблонов информации). При этом накопленные сведения автоматически обобщаются до информации, которая может быть охарактеризована как знания. В общем случае процесс ИАД состоит из трёх стадий:
-выявление закономерностей;
-использование выявленных
-анализ исключений, предназначенный
для выявления и толкования
аномалий в найденных
Новыми компьютерными технологиями, образующими ИАД являются экспертные и интеллектуальные системы, методы искусственного интеллекта, базы знаний, базы данных, компьютерное моделирование, нейронные сети, нечеткие системы. Современные технологии ИАД позволяют создавать новое знание, выявляя скрытые закономерности, прогнозируя будущее состояние систем. Основным методом моделирования социально-экономического развития города является метод имитационного моделирования, который позволяет исследовать городскую систему с помощью экспериментального подхода. Это дает возможность на модели проиграть различные стратегии развития, сравнить альтернативы, учесть влияние многих факторов, в том числе с элементами неопределенности.
Построенная в данной работе модель относится именно к такому классу систем. На ее основе органы местного самоуправления стратегического и тактического уровней получают возможность проанализировать динамику развития сложной социально-экономической городской системы, выявить неочевидные на первый взгляд взаимосвязи, сравнить различные альтернативы, проанализировать аномалии и принять наиболее обоснованное решение. Перспективно применение в СППР комбинированных методов принятия решений в сочетании с методами искусственного интеллекта и компьютерным моделированием, различные имитационно-оптимизационные процедуры, принятие решений в сочетании с экспертными процедурами.
Задание 9. Дайте характеристику системе поддержки принятия решений по бухгалтерскому учету и налогообложению.
Ответ: Система разработана специально для бухгалтеров, аудиторов и налоговых инспекторов. Используется на предприятиях, ведущих учет по Общему плану счетов. Особый интерес представляет для аудиторских и консалтинговых фирм, а также налоговых органов. Система включает тысячи консультаций по вопросам применения законодательства в практике бухгалтерского учета и налогообложения, завершенные схемы учета, статьи специализированной прессы по актуальным вопросам бухучета и налогообложения, а также все необходимые в работе бухгалтера федеральные нормативные документы.
Задание 10. Охарактеризуйте интеллектуальных агентов компании.
Ответ: Интеллектуальные агенты - это программы, способные действовать, рассуждать и коммуницировать с себе подобными или с пользователем. Для моделирования рассуждений каждый агент обладает сложной структурой памяти: память для хранения базы знаний (долгосрочная память), память образов для хранения воспринятой сцены (среднесрочная память), память актуализированных понятий, необходимых для промежуточных рассуждений (среднесрочная память), память фактов, а также сообщений (краткосрочная память).
Построенные агенты могут решать следующие задачи: определение групп и видов наиболее выгодных для фирмы групп товаров, обоснование объемов кредитов для финансирования закупок и определение предельной процентной ставки, определение наилучшей скидки при оптовых закупках товаров и торговой наценки на товар и т.п.
Сообщения агентов могут включать запрос на дополнительную информацию, содержать предложение, передавать состояние агента или его планы и т.д. При этом переговоры по своей сути – это поиск компромисса, т.е. в ходе переговоров агенты могут и должны пересматривать свои требования или предложения, а также менять планы.