Автор работы: Пользователь скрыл имя, 15 Октября 2013 в 17:18, доклад
Логарифмическая линейка
аналоговое вычислительное устройство, позволяющее выполнять несколько математических операций, в том числе умножение и деление чисел, возведение в степень (чаще всего в квадрат и куб) и вычисление квадратных и кубических корней, вычисление логарифмов, тригонометрических функций и другие операции. Логарифмическая линейка. Умножение 1,3 × 2 или деление 2,6 / 2 (см. шкалы C и D).
Докомпьютерная эпоха
Абак- «Счётная доска»,V век д.н.э. в Греции и Египте. Счёты (В России в 15-17вв)
Логарифмическая линейка
аналоговое вычислительное устройство, позволяющее выполнять несколько математических операций, в том числе умножение и деление чисел, возведение в степень (чаще всего в квадрат и куб) и вычисление квадратных и кубических корней, вычисление логарифмов, тригонометрических функций и другие операции. Логарифмическая линейка. Умножение 1,3 × 2 или деление 2,6 / 2 (см. шкалы C и D).
Принцип действия логарифмической линейки основан на том, что умножение и деление чисел заменяется соответственно сложением и вычитанием их логарифмов. Первый вариант линейки разработал английский математик-любитель Уильям Отред в 1622 году.
1645г.-Б.Паскаль, изобрёл 1 механическую счётную машину(2 действия +/-)-АРИФМОМЕТР
Француз Блез Паскаль начал создавать суммирующую машину «Паскалину» в 1642 г. в возрасте 19 лет, наблюдая за работой своего отца, который был сборщиком налогов и был вынужден часто выполнять долгие и утомительные расчёты.
Машина Паскаля представляла собой механическое устройство в виде ящичка с многочисленными связанными одна с другой шестерёнками. Складываемые числа вводились в машину при помощи соответствующего поворота наборных колёсиков. На каждое из этих колёсиков, соответствовавших одному десятичному разряду числа, были нанесены деления от 0 до 9. При вводе числа, колесики прокручивались до соответствующей цифры. Совершив полный оборот избыток над цифрой 9 колёсико переносило на соседний разряд, сдвигая соседнее колесо на 1 позицию. Первые варианты «Паскалины» имели пять зубчатых колёс, позднее их число увеличилось до шести или даже восьми, что позволяло работать с большими числами, вплоть до 9999999. Ответ появлялся в верхней части металлического корпуса. Вращение колёс было возможно лишь в одном направлении, исключая возможность непосредственного оперирования отрицательными числами. Тем не менее, машина Паскаля позволяла выполнять не только сложение, но и другие операции, но требовала при этом применения довольно неудобной процедуры повторных сложений. Вычитание выполнялось при помощи дополнений до девятки, которые для помощи считавшему появлялись в окошке, размещённом над выставленным оригинальным значением.
Несмотря на преимущества автоматических вычислений использование десятичной машины для финансовых расчётов в рамках действовавшей в то время во Франции денежной системы было затруднительным. Расчёты велись в ливрах, су и денье. В ливре насчитывалось 20 су, в су — 12 денье. Понятно что использование десятичной системы усложняло и без того нелёгкий процесс вычислений.
Тем не менее, примерно за 10 лет Паскаль построил около 50 и даже сумел продать около дюжины вариантов своей машины. Несмотря на вызываемый ею всеобщий восторг машина не принесла богатства своему создателю. Сложность и высокая стоимость машины в сочетании с небольшими вычислительными способностями служили препятствием её широкому распространению. Тем не менее, заложенный в основу «Паскалины» принцип связанных колёс почти на три столетия стал основой для большинства создаваемых вычислительных устройств.
1673г.-Г.В.Лейбниц, арифмометр с 4 действиями.
Механический калькулятор
был создан Лейбницем в 1673 году. Сложение
чисел выполнялось при помощи
связанных друг с другом колёс, так
же как на вычислительной машине другого
выдающегося учёного-
1820-1856гг. – Ч.Беббидж работает над проектом аналитической, программируемой машины.
Работала такая машина на перфокартах
Бэббидж в 1834 году задумался
о создании программируемой вычислительной
машины, которую он назвал аналитической
(прообраз современного компьютера). В
отличие от разностной машины, аналитическая
машина позволяла решать более широкий
ряд задач. Именно эта машина стала
делом его жизни и принесла
посмертную славу. Он предполагал, что
построение новой машины потребует
меньше время и средств, чем доработка
разностной машины, так как она
должна была состоять из более простых
механических элементов. С 1834 года Бэббидж
начал проектировать
Архитектура современного компьютера во многом схожа с архитектурой аналитической машины. В аналитической машине Бэббидж предусмотрел следующие части: склад (store), фабрика или мельница (mill), управляющий элемент (control) и устройства ввода/вывода информации.
Склад предназначался для хранения как значений переменных, с которыми производятся операции, так и результатов операций. В современной терминологии это называется памятью.
Мельница (арифметико-логическое устройство, часть современного процессора) должна была производить операции над переменными, а так же хранить в регистрах значение переменных, с которыми в данный момент осуществляет операцию.
Третье устройство, которому Бэббидж не дал названия, осуществляло управление последовательностью операций, помещение переменных в склад и извлечение их из склада, а также выводом результатов. Оно считывало последовательность операций и переменные с перфокарт. Перфокарты были двух видов: операционные карты и карты переменных. Из операционных карт можно было составить библиотеку функций. Кроме того, по замыслу Бэббиджа, Аналитическая машина должна была содержать устройство печати и устройство вывода результатов на перфокарты для последующего использования.
Для создания компьютера в
современном понимании
ЭНИАК (ENIAC, сокр. от англ. Electronic Number Integrator And Computer — Электронный числовой интегратор и вычислитель)
— первый широкомасштабный электронный цифровой компьютер, который можно было перепрограммировать для решения полного диапазона задач (предыдущие компьютеры имели только часть из этих свойств). Построен в 1946 году по заказу Армии США в Лаборатории баллистических исследований для расчётов таблиц стрельбы. Запущен 14 февраля 1946 года.
Архитектуру компьютера разработали в 1943 году Джон Преспер Экерт и Джон Уильям Мокли, учёные из Университета Пенсильвании. В отличие от созданного в 1941 году немецким инженером Конрадом Цузе комплекса Z3, использовавшего механические реле, в ЭНИАКе в качестве основы компонентной базы применялись вакуумные лампы. Всего комплекс включал 17468 ламп, 7200 кремниевых диодов, 1500 реле, 70000 резисторов и 10000 конденсаторов. Потребляемая мощность — 150 кВт. Вычислительная мощность — 300 операций умножения или 5000 операций сложения в секунду. Вес - 27 тонн. Вычисления производились в десятичной системе.
До 1948 года для перепрограммирования ENIAC нужно было, фактически, перекоммутировать его заново.
Первое поколение (1945-1954) - компьютеры на электронных лампах
Это доисторические времена,
эпоха становления
Основоположниками компьютерной науки по праву считаются Клод Шеннон - создатель теории информации, Алан Тьюринг - математик, разработавший теорию программ и алгоритмов, и Джон фон Нейман - автор конструкции вычислительных устройств, которая до сих пор лежит в основе большинства компьютеров. В те же годы возникла еще одна новая наука, связанная с информатикой, - кибернетика, наука об управлении как одном из основных информационных процессов. Основателем кибернетики является американский математик Норберт Винер.
Первый универсальный программируемый компьютер в континентальной Европе был создан командой учёных под руководством Сергея Алексеевича Лебедева из Киевского института электротехники СССР, Украина. ЭВМ МЭСМ (Малая электронная счётная машина) заработала в 1950 году. Она содержала около 6000 электровакуумных ламп и потребляла 15 кВт. Машина могла выполнять около 3000 операций в секунду. Другой машиной того времени была австралийская CSIRAC, которая выполнила свою первую тестовую программу в 1949 году.
Первой советской серийной ЭВМ стала Стрела, производимая с 1953 на Московском заводе счётно-аналитических машин. «Стрела» относится к классу больших универсальных ЭВМ (Мейнфрейм) с треёхадресной системой команд. ЭВМ имела быстродействие 2000-3000 операций в секунду. В качестве внешней памяти использовались два накопителя на магнитной ленте емкостью 200 000 слов, объём оперативной памяти — 2048 ячеек по 43 разряда. Компьютер состоял из 6200 ламп, 60 000 полупроводниковых диодов и потреблял 150 кВт энергии.
Второе поколение: конец 50-х годов — конец 60-х годов:
Следующим крупным шагом в истории компьютерной техники, стало изобретение транзистора в 1947 году. Они стали заменой хрупким и энергоёмким лампам. О компьютерах на транзисторах обычно говорят как о «втором поколении», которое доминировало в 1950-х и начале 1960-х. Благодаря транзисторам и печатным платам, было достигнуто значительное уменьшение размеров и объёмов потребляемой энергии, а также повышение надёжности. Например, IBM 1620 на транзисторах, ставшая заменой IBM 650 на лампах, была размером с офисный стол. Однако компьютеры второго поколения по-прежнему были довольно дороги и поэтому использовались только университетами, правительствами, крупными корпорациями.
Быстродействие до миллиона операций в секунду! (сравните несколько тысяч у ламповых компьютеров).
С появлением машин второго
поколения значительно
Стали применяться внешние накопители на жестких магнитных дисках и на флоппи-дисках - промежуточный уровень памяти между накопителями на магнитных лентах и оперативной памятью.
В 1964 году появился первый монитор для компьютеров - IBM 2250. Это был монохромный дисплей с экраном 12 х 12 дюймов и разрешением 1024 х 1024 пикселов. Он имел частоту кадровой развертки 40 Гц.
Первой ЭВМ, в которой частично использовались полупроводниковые приборы вместо электронных ламп, была машина SEAC (Standarts Eastern Automatic Computer), созданная в 1951 году.
В начале 60-х годов полупроводниковые машины стали производиться и в СССР.
Третье поколение 1970 - 1980
Элементная база ЭВМ - малые интегральные схемы (МИС). Машины предназначались для широкого использования в различных областях науки и техники (проведение расчетов, управление производством, подвижными объектами и др.). Благодаря интегральным схемам удалось существенно улучшить технико-эксплуатационные характеристики ЭВМ. Например, машины третьего поколения по сравнению с машинами второго поколения имеют больший объем оперативной памяти, увеличилось быстродействие, повысилась надежность, а потребляемая мощность, занимаемая площадь и масса уменьшились.
Бурный рост использования компьютеров начался с т. н. «3-им поколением» вычислительных машин. Начало этому положило изобретение интегральных схем, которые независимо друг от друга изобрели лауреат Нобелевской премии Джек Килби и Роберт Нойс. Позже это привело к изобретению микропроцессора Тэдом Хоффом (компания Intel).
Характерной чертой данного
периода явилось резкое снижение
цен на аппаратное обеспечение. Этого
удалось добиться главным образом
за счет использования интегральных
схем. Обычные электрические
Начиная с момента широкого использования интегральных схем в компьютерах, технологический прогресс в вычислительных машинах можно наблюдать, используя широко известный закон Мура. Один из основателей компании Intel Гордон Мур в 1965 году открыл закон, согласно которому количество транзисторов в одной микросхеме удваивается через каждые 1,5 года.
В вычислительных машинах
третьего поколения значительное внимание
уделяется уменьшению трудоемкости
программирования, эффективности исполнения
программ в машинах и улучшению
общения оператора с машиной.
Это обеспечивается мощными операционными
системами, развитой системой автоматизации
программирования, эффективными системами
прерывания программ, режимами работы
с разделением машинного