Автор работы: Пользователь скрыл имя, 27 Мая 2014 в 17:23, курсовая работа
В 1800 г. итальянский ученый А. Вольта создал первый химический источник тока. Это изобретение дало возможность немецкому ученому С. Земмерингу построить и представить в 1809 г. Мюнхенской академии наук проект электрохимического телеграфа. Телеграф Земмеринга имел много недостатков и не нашел практического применения. Понадобилось более 20 лет, чтобы появилась первая практически применимая система телеграфирования. Ее автор — выдающийся русский ученый Шиллинг. В октябре 1832 г. состоялась первая публичная демонстрация электромагнитного телеграфа. В том же году с помощью телеграфа Шиллинга была налажена связь, между Зимним дворцом и Министерством путей сообщения.
Введение
На заре становления человеческого общества общение между людьми было весьма скудным. Воткнутая в землю ветка указывала, в каком направлении и на какое расстояние ушли люди; особо положенные камни предупреждали о появлении врагов; зарубки на палках или деревьях сообщали об охотничьей добыче и пр. Существовала и примитивная передача сигналов на расстояние. Сообщения, закодированные в виде определенного числа выкриков либо ударов барабана с изменяющимся ритмом, содержали ту или иную информацию.
В десятом томе «Всеобщей истории» древнегреческого историка Полибия (ок. 201—120 г. до н.э.) описан способ передачи сообщений на расстояние с помощью факелов (факельный телеграф), изобретенный александрийскими учеными Клеоксеном и Демоклитом.
В 1800 г. итальянский ученый А. Вольта создал первый химический источник тока. Это изобретение дало возможность немецкому ученому С. Земмерингу построить и представить в 1809 г. Мюнхенской академии наук проект электрохимического телеграфа. Телеграф Земмеринга имел много недостатков и не нашел практического применения. Понадобилось более 20 лет, чтобы появилась первая практически применимая система телеграфирования. Ее автор — выдающийся русский ученый Шиллинг. В октябре 1832 г. состоялась первая публичная демонстрация электромагнитного телеграфа. В том же году с помощью телеграфа Шиллинга была налажена связь, между Зимним дворцом и Министерством путей сообщения.
Подлинную революцию в деле электросвязи по проводам произвели русский академик Б.С. Якоби и американский ученый С. Морзе, предложившие независимо друг от друга пишущий телеграф. Заслугой С. Морзе является создание используемой до сих пор телеграфной азбуки, в которой буквы обозначались комбинацией точек и тире.
В 1841 г. Б. С. Якоби ввел в эксплуатацию линию, оборудованную пишущим телеграфом и соединявшую Зимний дворец с Главным штабом. Через два года аналогичная линия протяженностью 25 км была построена между Петербургом и Царским Селом. Первая действующая линия связи в США (Вашингтон — Балтимор, 63 км) начала действовать в 1844 г.
В 1850 г. Б.С. Якоби сконструировал первый буквопечатающий аппарат, который в 1874 г. был усовершенствован американцем Д. Юзом и французом Ж. Бодо.
В июне 1866 г. была осуществлена прокладка кабеля через Атлантический океан. Европа и Америка оказались связанными телеграфом. С 1866 г. телеграфные линии потянулись во все концы земного шара, связав между собой страны и континенты.
Рождение телеграфа дало толчок к появлению телефона. Начиная уже с 1837 г. многие изобретатели пытались передать на расстояние человеческую речь с помощью электричества. Почти через 40 лет эти опыты увенчались успехом. В 1876 г. американский изобретатель А.Г. Белл запатентовал устройство для передачи речи по проводам — телефон. В 1878 г, русский ученый М. Махальский сконструировал первый чувствительный микрофон с угольным порошком, который в модернизированном виде применяется во всех современных телефонных аппаратах.
На первых порах для телефонной связи использовались телеграфные линии. Но для улучшения качества связи потребовалось строительство специальных двухпроводных телефонных линий. Такая линия была спроектирована в 1895 г. между Петербургом и Москвой профессором Петербургского электротехнического института П.Д. Войнаровским и построена в 1898 г.
Существенный вклад в усовершенствование телефона внес русский физик П.М. Голубицкий, который в 1886г. разработал новую схему телефонной связи. Согласно этой схеме микрофоны абонентских телефонных аппаратов получали питание от одной (центральной) батареи, расположенной на телефонной станции. Эта система была внедрена во всем мире под названием системы ЦБ.
Первые телефонные станции в России были построены в 1882—1883 гг. в Москве, Петербурге, Одессе.
Уже в конце прошлого столетия Земля оказалась опоясанной проводами и кабелями, соединяющими города и континенты. Однако проводная связь не могла удовлетворить быстрорастущие потребности промышленности, транспорта и особенно судоходства. В беспроволочной связи остро нуждались мореплаватели и военный флот.
Изобретение радио — заслуга нашего выдающегося соотечественника, талантливого русского ученого А.С. Попова. Первая публичная демонстрация устройства А.С. Попова для приема электромагнитных волн состоялась на заседании Русского физико-химического общества 7 мая 1895 г. Этот день и вошел в историю как день изобретения радио. В марте 1896 г. А.С. Попов передал электрическими сигналами без проводов текст, состоящий из двух слов («Генрих Герц»), на расстояние всего 250 м. А уже в 1900 г. радиосвязь использовалась на практике при снятии с камней броненосца «Генерал-адмирал Апраксин» и при спасении рыбаков, унесенных в море.
В 1913 г. был организован радиотелеграфный завод с радиолабораторией под руководством М.В. Шулейкина, а в 1914 г. в Москве и Петербурге построены первые искровые радиостанции.
2. Современные тенденции развития магистральной связи.
а) |
Рис.1. Виды сигналов: а – непрерывный; б – дискретный
Сигналы, как и сообщения, могут быть непрерывными и дискретными. Информационный параметр непрерывного сигнала с течением времени может принимать любые мгновенные значения в определенных пределах. Непрерывный сигнал часто называют аналоговым. Дискретный сигнал характеризуется конечным числом значений информационного параметра. Часто этот параметр принимает всего два значения. На рис.1 показаны виды непрерывного и дискретного сигналов.
В дальнейшем будем рассматривать принципы и средства связи, основанные на использовании электрической энергии в качестве переносчиков сообщений, т.е. электрических сигналов. Выбор электрических сигналов для переноса сообщений на расстояние обусловлен их высокой скоростью распространения (около км/мс). 300
2.1Обобщенная структурная схема
Система электросвязи [6] – это совокупность технических средств и среды распространения, обеспечивающая передачу сообщений. Обобщенная структурная схема систем электросвязи показана на рис.1.
Сообщение с выхода источника сообщения (ИС) при помощи преобразователя сообщение-сигнал (Пр. С-С) преобразуется в первичный электрический сигнал, которые не всегда удобно (а иногда невозможно) непосредственно передавать по линии связи. Поэтому первичные сигналы при помощи передатчика (ПРД) преобразуются в так называемые вторичные сигналы, характеристики которых хорошо согласуются с характеристиками линии связи. С вызова линии связи сигналы поступают на вход приемника (ПРМ) и через (Пр. С-С) – потребителю сообщения (ПС).
Рис.1. Обобщенная структурная схема системы электросвязи
Канал связи – это совокупность технических устройств (преобразователей) среды распространения, обеспечивающих передачу сигналов на расстояние.
Каналы и системы связи, использующие искусственную среду распространения (металлические провода, оптическое волокно), называются проводными, а каналы и системы связи, в которых сигналы передаются через открытое пространство – называются радиоканалами и радиосистемами
При передаче сведений по телеграфу информация заложена в буквах, из которых составлены слова, и цифрах. Очевидно, что на конечном отрезке времени число букв или цифр конечное. Это и является отличительной особенностью дискретного или счетного сообщения. В то же время число различных возможных значений звукового давления, измеренное при разговоре, даже на конечном отрезке времени будет бесконечным. В современных цифровых системах телефонной связи в канал связи передаются кодовые комбинации, несущие информацию об отсчетах квантованного аналогового сигнала.
Следовательно, такой телефонный квантованный сигнал относится к классу дискретных, и поэтому будем в дальнейшем рассматривать только вопросы передачи дискретных сообщений. В случае телефонной связи под сообщением будем понимать некоторую последовательность отсчетов квантованного аналогового сигнала, передаваемую в канале связи в виде последовательности кодовых комбинаций (см. гл. 3).
Информация, содержащаяся в сообщении, передается получателю по каналу передачи дискретных сообщений (ПДС) (рис.1).
Сообщение поступает от источника дискретных сообщений, который характеризуется алфавитом передаваемых сообщений А. Пусть объем этого алфавита (число символов алфавита) К, а вероятность выдачи символа аi А (1< i < К ) р(аi). К числу основных информационных характеристик сообщений относятся количество информации в отдельных сообщениях, энтропия и производительность источника сообщений [1– 4]:
Количество информации в сообщении (символе) определяется в битах – единицах измерения количества информации. Чем меньше вероятность появления того или иного сообщения, тем большее количество информации мы извлекаем при его получении. Если в памяти источника имеются два независимых сообщения (а1 и а2) и первое из них выдается с вероятностью р(а1) = 1, то сообщение а1 не несет информации, ибо оно заранее известно получателю.
Было предложено определять количество информации на одно сообщение аi , выражением
Среднее количество информации Н(А), которое приходится на одно сообщение, поступающее от источника без памяти, получим, применив операцию усреднения по всему объему алфавита [1]:
|
(1) |
Выражение (1) известно как формула Шеннона для энтропии источника дискретных сообщений. Энтропия – мера неопределенности в поведении источника дискретных сообщений. Энтропия равна нулю, если с вероятностью единица источником выдается всегда одно и то же сообщение (в этом случае неопределенность в поведении источника сообщений отсутствует). Энтропия максимальна, если символы источника появляются независимо и с одинаковой вероятностью. Определим энтропию источника сообщений, если К = 2 и р(а1) = р(а2) = 0,5. Тогда
Отсюда 1 бит – это количество информации, которое переносит один символ источника дискретных сообщений в том случае, когда алфавит источника состоит из двух равновероятных символов.
Если в предыдущем примере взять р(а1) ≠ р(а2), то Н(А)<1 бит/сообщ. Таким образом, один бит – максимальное среднее количество информации, которое переносит один символ источника дискретных сообщений в том случае, когда алфавит источника включает два независимых символа. Среднее количество информации, выдаваемое источником в единицу времени, называют производительностью источника.
2.2 Классификация видов связи.
Условная классификация современных видов электросвязи показана на рис.8. Все виды электросвязи по типу передаваемых сообщений могут быть разделены на предназначенные для передачи звуковых и оптических сообщений. В зависимости от назначения сообщений виды электросвязи могут быть классифицированы на виды, предназначенные для передачи сообщений индивидуального и массового характера. В зависимости от временного режима доставки сообщений, виды электросвязи могут быть разделены на виды, предназначенные для работы в реальном времени и осуществляющие отложенную доставку сообщений.
Приведенная на рис. 8 классификация достаточно условна, поскольку в последнее время наметилась тенденция объединения видов электросвязи в единую интегральную систему на основе цифровых методов передачи и коммутации для передачи всех видов сообщений.
Сеть связи – это совокупность технических средств, обеспечивающих передачу и распределение сообщений [2,3]. Принципы построения сетей связи зависят от вида передаваемых и распределяемых сообщений.
Существуют следующие принципы построения (топологии) сетей:
· «каждый с каждым» (рис.9); сеть надежна, отличается оперативностью и высоким качеством передачи сообщений, на практике применяется при небольшом числе абонентов;
· радиальный («звезда») (рис.10): используется при ограниченном числе абонентских пунктов, расположенных на небольшой территории;
· радиально-узловой (рис.11): такую структуру имеют городские телефонные сети, если емкость сети не превышает 80... 90 тыс. абонентов;
· радиально-узловой с узловыми районами (рис.12). Используется при построении телефонных сетей крупных городов.
Для обеспечения передачи индивидуальных сообщений необходимо связать (соединить) оконечные аппараты абонентов. Электрическая цепь (канал), состоящая из нескольких участков и обеспечивающая передачу сигналов между абонентами, называется соединительным трактом.
Рис. 9. Топология сети "каждый с каждым". |
Рис. 10. Топология сети "звезда": |
Рис.11. Радиально-узловая топология сети:
А – абонентское устройство; АЛ – абонентская линия;
С – станции; СЛ – соединительная линия
.
Рис. 12. Топология радиально-узловой сети
с узловыми районами:
УВС – узел входящих сообщений; УИС –
узел исходящих сообщений
Процесс поиска и соединения электрических цепей называется коммутацией каналов. Сеть, обеспечивающая коммутацию каналов, называется сетью с коммутацией каналов (СКК). Узловые станции сети СКК называются станциями коммутации.
При передаче документальных сообщений кроме организации связи с коммутацией каналов возможно осуществлять поэтапную передачу сообщения от узла к узлу. Такой способ передачи получил название коммутации сообщений. Соответственно сеть, обеспечивающая коммутацию сообщений, называется сетью с коммутацией сообщений (СКС).
Разновидностью СКС является сеть с коммутацией пакетов (СКП). В этом случае полученное от передающего абонента сообщение разбивается на блоки (пакеты) фиксированной длины. Пакеты передаются по сети (необязательно по одному и тому же маршруту) и объединяются в сообщение перед выдачей принимающему абоненту. В свою очередь, СКП подразделяются на дейтаграммные (от англ. datagram) и сети виртуальных каналов. В дейтаграммных сетях каждый из пакетов рассматривается как независимый информационный блок, причем пакеты могут проходить через сеть по различным маршрутам. В сетях виртуальных каналов до передачи пакетов через сеть выбирается оптимальный в некотором смысле маршрут, по которому затем передаются пакеты. Последовательность узлов, входящих в выбранный маршрут, образуют собственно виртуальный канал.