Автор работы: Пользователь скрыл имя, 27 Мая 2014 в 17:23, курсовая работа
В 1800 г. итальянский ученый А. Вольта создал первый химический источник тока. Это изобретение дало возможность немецкому ученому С. Земмерингу построить и представить в 1809 г. Мюнхенской академии наук проект электрохимического телеграфа. Телеграф Земмеринга имел много недостатков и не нашел практического применения. Понадобилось более 20 лет, чтобы появилась первая практически применимая система телеграфирования. Ее автор — выдающийся русский ученый Шиллинг. В октябре 1832 г. состоялась первая публичная демонстрация электромагнитного телеграфа. В том же году с помощью телеграфа Шиллинга была налажена связь, между Зимним дворцом и Министерством путей сообщения.
Узловые станции СКС и СКП называются центрами коммутации сообщений (ЦКС) и пакетов (ЦКП) соответственно.
На практике наиболее широко применяются метод коммутации каналов и метод коммутации пакетов.
Телеграфные сети строятся по радиально-узловому принципу с учетом административно- территориального деления страны. Оконечными пунктами телеграфной сети являются либо отделения связи, либо телеграфные абоненты, обладающие телеграфной аппаратурой. Сеть имеет три уровня узловых пунктов: районные, областные и главные. Сеть передачи данных имеет схожую структуру. Сеть факсимильной связи строится на базе телефонной сети.
2.4 Организации стандартизации в области телекоммуникаций.
Цель деятельности организаций стандартизации в области телекоммуникаций заключается в создании единых международных стандартов. Отсутствие единых стандартов приводит к несовместимости оборудования различных производителей и, как следствие, невозможности организации международной связи. Организации стандартизации обеспечивают условия для обсуждения прогрессивных технологий, утверждают результаты этих обсуждений в виде официальных стандартов, а также обеспечивают распространение утвержденных стандартов.
Порядок работы организаций стандартизации по принятию стандартов может отличаться. Однако он схож в том, что производится несколько этапов разработки и обсуждения новых технологий, разработки проектов стандартов, голосования по всем или некоторым аспектам этих стандартов и, наконец, официального выпуска завершенных стандартов.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 9 декабря 2013; проверки требуют 103 правки.
Перейти к: навигация, поиск
У этого термина существуют и другие значения, см. Кабель (значения).
Ка́бель (вероятно через нем. Kаbеl или нидерл. kаbеl из фр. câble, от лат. сарulum — аркан) — конструкция из одного
или нескольких изолированных
друг от друга проводников
(жил), или оптических
волокон, заключённых в оболочку.
Кроме жил и изоляции кабель может содержать экран,
сердечник, заполнитель, стальную или
проволочную броню, металлическую оболочку,
внешнюю оболочку. Каждый конструктивный
элемент нужен для работоспособности
кабеля в определенных условиях среды.
Также конструктивные элементы кабеля
отличают его от провода.[источник не указан
Существуют также кабели, совмещающие в себе функции передачи и излучения радиосигналов (излучающий кабель), либо преобразования электрической энергии в тепло на большой протяжённости (греющий кабель).
В 1878 году инженер-технолог М. М. Подобедов организовал в России на Васильевском острове Санкт-Петербурга первые кустарные мастерские для выработки проводников с шёлковой и хлопчатобумажной изоляцией, на которых работало несколько человек. Там же им было создано небольшое предприятие «Русское производство изолированных проводников электричества Подобедовых, Лебурде и Ко», преобразованное в 1888 году в завод «Русское производство проводов электричества» М. М. Подобедова. 25 октября 1879 года Вернеру фон Сименсу (фирма «Сименс и Гальске») было выдано свидетельство на производство работ в построенном им заводе по изготовлению изолированной проволоки и телеграфных проводов в Васильевской части Санкт-Петербурга (впоследствии завод «Севкабель»).[1]
Телефонный кабель пучковой скрутки
Оптический кабель
Группы однородной кабельной продукции включают кабели:
Также кабели разделяют по:
Стандарт ISO 11801 2002 детально описывает классификацию кабелей.
Телефонный кабель повивной скрутки
Воздушная линия электропередачи переходит в кабельную
Токопроводящая жила — элемент кабельного изделия, предназначенный для прохождения электрического тока.[3]
Жилы в кабелях изготавливаются из следующих материалов:
Токопроводящие жилы силовых кабелей нормируют по сечению.[4] Внутренний проводник радиочастотных и коаксиальных кабелей связи, жилы симметричных кабелей связи, жилы кабелей для сигнализации и блокировки нормируются по их диаметру.[5]
В случаях, когда кабели необходимо герметизировать (например, для судовых кабелей) промежутки между проволоками многопроволочных жил заполняют герметизирующим составом.[6]
Диаметр однопроволочных медных жил симметричных высокочастотных, станционных, телефонных (для соединительных и абонентских линий сетей местной телефонной связи) кабелей должен соответствовать ряду: 0,32; 0,4; 0,5; 0,64; 0,7; 0,9; 1,2 мм; для многопроволочных жил — диаметр медных проволок (0,1…0,52) мм, число проволок от 7 до 19.[7]
Оболочка кабеля предназначена для защиты проводников и изоляторов от внешних воздействий, прежде всего от влаги, которая приводит к нарушению изоляции электрических кабелей, а также помутнению оптических волокон.
Оболочка кабеля может состоять из одного и более герметизирующих и армирующих слоёв, в качестве этих слоёв могут применяться различные материалы: ткань, пластмассы, металл, резина и проч. Кабели для передачи электрических сигналов могут быть снабжены экраном из металлической сетки, листового металла (фольги) или полимерной плёнки с тонким металлическим покрытием.
Поливинилхлоридные пластикаты, применяемые в кабельных изделиях, делятся на три основные группы:
Твёрдый поливинилхлорид имеет высокое содержание хлора (около 57 %) и воспламеняется с трудом. Один килограмм твёрдого поливинилхлорида выделяет 350 литров газообразного хлороводорода, который при растворении может дать более 2 литров концентрированной (25 %) соляной кислоты.
Для изоляции кабелей применяется мягкий поливинилхлорид или кабельный пластикат. Этот материал содержит 50 % различных добавлений (пластификаторов и др.), которые сильно изменяют горючие свойства полимера. Пластификаторы начинают улетучиваться уже при температуре 200 °C и загораются. Содержание хлора уменьшается примерно до 35 %, и его не хватает, чтобы препятствовать распространению огня. Однако, при сильном выделении хлороводорода твёрдый поливинилхлорид, удалённый от очага, не загорается и пожар гаснет.
Благодаря перепаду температур, тяге, создаваемой в кабельных шахтах, газы, содержащие хлороводород уносятся от очага пожара, проникают в щитовые и аппаратные помещения и оседают на оборудовании.[9]
В начале 1980-х годов требования к пожарной безопасности кабелей сводились в основном к нераспространению горения по длине кабельных изделий, проложенных одиночно или в пучках. Для этого применяли оболочки кабельных изделий, изготовленных из пластикатов марок О-40, ГОСТ 5960-72 (кабели ВВГ, АВВГ);[10] при испытании пластиката образец длиной 130 мм, шириной 10 мм и толщиной 2 мм вносится в пламя газовой или спиртовой горелки с выдерживанием его в пламени под углом 45° до воспламенения, после этого образец достаётся из пламени и должен потухнуть за время не более 30 секунд.[11]) и НГП 30-32 (НГП 40-32) (ТУ 1328-86)[12]
Проводились экспериментальные исследования, моделирующие прокладку кабеля в пожароопасном помещении. Кабели АВВГ 3х25+1х16, прокладывались горизонтально на лотках и покрывались слоем опилок. При укладке в три ряда и 14 кабелей в ряду кабельная трасса выгорала полностью по всей длине. При этом были зафиксированы скорости: на нижнем ряду 0,00154 м/с, на среднем 0,00167 м/с, на верхнем 0,00170 м/с.[13]
ГОСТ 5960-72 «Пластикат поливинилхлоридный для изоляции и защитных оболочек проводов и кабелей» был разработан и введён в действие с 1 января 1974 года, имеет 9 изменений. С 1991 года работы по внесению технических изменений в ГОСТ 5960-72 были прекращены. Дальнейшие разработки и модификации существующих марок ПВХ пластикатов оформлялись в виде технических условий.[14] С 1 июля 2010 отменяется действие на территории РФ стандартов ГОСТ 6323-79 «Провода с поливинилхлоридной изоляцией для электрических установок. ТУ» и ГОСТ 16442-80 «Кабели силовые с пластмассовой изоляцией. ТУ» и вводятся в действие ГОСТ Р 53768-2010 «Провода и кабели для электрических установок на номинальное напряжение 450/750 В включительно. ОТУ» и ГОСТ Р 53769-2010 «Кабели силовые с пластмассовой изоляцией на номинальное напряжение 0,66; 1 и 3 кВ. ОТУ».[15]
4. Изоляция
Кабельная бумага по ГОСТ 23436-83 для изоляции силовых кабелей на напряжение до 35 кВ марок К и КМП изготавливается из небеленой сульфатной целлюлозы, марки КМ — из небелёной сульфатной целлюлозы для многослойной кабельной бумаги. Кабельная бумага по ГОСТ 645-79 для изоляции кабелей на напряжение от 110 до 500 кВ изготавливается из специальной сульфатной небелёной целлюлозы, бумага марок КВМ (многослойная) и КВМС (многослойная стабилизированная) выпускается машинной гладкости, а бумага марки КВМСУ (многослойная стабилизированная уплотнённая) — каландрированной.[16]
Коаксиальный фидер с полувоздушной изоляцией
Современные кабели производятся с изоляцией из сшитого полиэтилена и используются в сетях различного класса напряжения (до 500 кВ). Применение сшитого полиэтилена обеспечивает высокие диэлектрические свойства изоляции, высокие механические свойства, более высокие по сравнению с бумажно-масляной изоляцией термические режимы, надёжность и долговечность кабелей.
Распространение пожара в Останкинской телебашне в направлении сверху вниз было обусловлено стекающим расплавом полиэтиленовой оболочки фидеров. В лабораторных условиях скорость распространения пламени составляла 0,25-0,50 м/мин; при пожаре на телебашне, из-за высокой объёмной температуры, скорость распространения выросла в 2-4 раза, при этом падающие вниз горевшие капли полиэтилена создавали вторичные очаги пожара.
Из-за высокой температуры в очаге пожара и высокой теплопроводности жил меди огнезащита антенных фидеров оказалась не эффективна. В качестве огнезащиты использовалась краска для полиэтиленовой оболочки фидеров и изоляция поверхности стекловолоконной тканью. Огнезащитная конструкция обвисала и опадала при интенсивном горении полиэтилена изнутри. Кроме активного горения фидеров, имевших горючие внешние полиэтиленовые оболочки, вклад внесло также горение других кабелей, которые не были защищены огнезащитными составами.[17]
Маслонаполненный кабель — это кабель с избыточным давлением, создаваемым маслом, входящим в состав бумажной пропитанной изоляции, и предусмотренной компенсацией температурных изменений объёма масла.
Маслонаполненный кабель в трубопроводе — это маслонаполненный кабель с отдельно экранированными жилами, заключёнными в трубопровод, служащий интенсивное развитие цифровых систем передачи объясняется существенными достоинствами этих систем по сравнению с налоговыми системами передачи: высокой помехоустойчивостью, слабой зависимостью качества передачи от длины линии связи; стабильностью электрических параметров каналов связи, эффективностью использования пропускной способности при передаче дискретных сообщений и др.
В заключение отметим, что человечество движется по пути создания Глобального информационного общества. Его основой станет Глобальная информационная инфраструктура, составляющей которой будут мощные транспортные сети связи и распределенные сети доступа, предоставляющие информацию пользователям.
Глобализация связи и ее персонализация (доведение услуг связи до каждого пользователя) — вот две взаимосвязанные проблемы, успешно решаемые на данном этапе развития человечества специалистами электросвязи.
Что ждет нас в конце нынешнего — начале будущего столетия? Большинство специалистов сходятся во мнении, что дальнейшая эволюция телекоммуникационных технологий будет идти в направлениях увеличения скорости передачи информации, интеллектуализации сетей и обеспечения мобильности пользователей [1—3].
Высокие скорости. Необходимы для передачи изображений, в том числе телевизионных, интеграции различных видов информации в мультимедийных приложениях, организации связи локальных, городских и территориальных сетей.
Интеллектуальность. Позволит увеличить гибкость и надежность сети, сделает более легким управление глобальными сетями. Благодаря интеллектуализации сетей пользователь перестает быть пассивным потребителем услуг, превращаясь в активного клиента — клиента, который сможет сам активно управлять сетью. Интеллектуальные сети строятся в предположении, что условия предоставления услуг и самой услуги должны применяться быстро.
Мобильность. Успехи в области миниатюризации электронных устройств, снижение их стоимости создают предпосылки к глобальному распространению мобильных оконечных устройств. Это делает реальной задачу предоставления услуг связи каждому в любое время и в любом месте.
Развитие пожаров в кабельных помещениях с кабелями в маслонаполненных трубах при равных условиях газообмена происходит более интенсивно, чем по кабелям воздушной прокладки. Вызвано это тем, что масло в трубах находится при температуре 35-40 °C под избыточным давлением и при разгерметизации трубы растекается, увеличивая площадь горения.[19]