Характеристика спутниковых систем связи

Автор работы: Пользователь скрыл имя, 20 Ноября 2012 в 13:38, курсовая работа

Краткое описание

Современные организации характеризуются большим объемом различной информации, в основном электронной и телекоммуникационной, которая проходит через них каждый день. Поэтому важно иметь высококачественный выход на коммутационные узлы, которые обеспечивают выход на все важные коммуникационные линии. В России, где расстояния между населенными пунктами огромное, а качество наземных линий оставляет желать лучшего, оптимальным решением этого вопроса является применение сетей спутниковой связи (ССС).

Содержание

Введение…………………………………………………………………………………...3
1. Система спутниковой связи…………………………………………………....4
1.1 История спутниковой связи………………..…………………………………..……..4
1.2 Организация спутникового ствола…………...………………………….…………...5
1.3 Космический сегмент……………………………..…………………………..………6
1.4 Сигнальная часть………………………………….………………………….…….....8
1.5 Наземный сегмент…………………………………………………………………...11
1.6 Система Aloha……………………………………….………………………..……...13
1.7 Преимущества и ограничения ССС……………………………………….………..14
2. Байкальские навигационные системы…………………..………..…………..17
2.1 Возможности ………………………………..……………………………………….17
2.2 Оборудования……………………………………………….….……………..…..….17
2.3 Мониторинг……………………………………………………………………….….19
2.4 Тарифы………………………………………………………………….….……..…..27
2.5 Что такое GPS………………………………………………………………...……...27
Заключение…………………………………………………………….…..……..………34
Список литературы………………………………………………………………………35

Вложенные файлы: 1 файл

Характеристика спутниковых сетей связи.doc

— 852.00 Кб (Скачать файл)

Содержание

 

Введение…………………………………………………………………………………...3

  1. Система спутниковой связи…………………………………………………....4

1.1 История спутниковой  связи………………..…………………………………..……..4

1.2 Организация спутникового  ствола…………...………………………….…………...5

1.3 Космический сегмент……………………………..…………………………..………6

1.4 Сигнальная часть………………………………….………………………….…….....8

1.5 Наземный сегмент…………………………………………………………………...11

1.6 Система Aloha……………………………………….………………………..……...13

1.7 Преимущества и ограничения  ССС……………………………………….………..14

  1. Байкальские навигационные системы…………………..………..…………..17

2.1 Возможности ………………………………..……………………………………….17

2.2 Оборудования……………………………………………….….……………..…..….17

2.3 Мониторинг……………………………………………………………………….….19

2.4 Тарифы………………………………………………………………….….……..…..27

2.5 Что такое GPS………………………………………………………………...……...27

Заключение…………………………………………………………….…..……..………34

Список литературы………………………………………………………………………35

 

Введение

Современные организации  характеризуются большим объемом  различной информации, в основном электронной и телекоммуникационной, которая проходит через них каждый день. Поэтому важно иметь высококачественный выход на коммутационные узлы, которые обеспечивают выход на все важные коммуникационные линии. В России, где расстояния между населенными пунктами огромное, а качество наземных линий оставляет желать лучшего, оптимальным решением этого вопроса является применение сетей спутниковой связи (ССС).

Системы спутниковой  связи широко используются во многих регионах мира и стали неотъемлемой частью инфраструктуры телекоммуникаций большинства стран. Не только промышленно развитые страны с разнообразными современными сетями телекоммуникаций, но все чаще и развивающиеся страны успешно внедряют ССС. Новые спутниковые приложения обеспечивают быстрое создание новых широковещательных служб и частных сетей.

Хотя коммерческое использование геосинхронных спутников  связи началось почти 25 лет назад, их широкое применение в сетях  связи стало возможным лишь в  начале 1980-х годов. Телевидение, телефония, широкополосная передача продолжают доминировать в списке услуг ССС. Современные системы спутниковой связи предоставляют беспрецедентные возможности для развития частных сетей, организации служб связи типа «точка-точка» и «точка-множество точек».

Методы исследования: при написании курсовой работы мною был произведен комплексный анализ. Основными в работе явились следующие методы  анализа: метод описания, историко-функциональный, сравнительно-сопоставительный.

Структура  работы: курсовая работа состоит из введения, двух глав, заключения, списка использованных источников, глоссария и одного приложения.

Основная  часть

1 Система спутниковой связи

 

1.1 История спутниковой связи

 

1929 Герман Поточник опубликовал книгу под названием «Проблема путешествия в космосе». В ней была впервые описана концепция геостационарной орбиты, которую Поточник называл «стационарным кружением».

1945 Артур Кларк направил письмо в журнал британских радиолюбителей Wireless World, где описывал «возможность более отдаленного будущего – может быть, через полстолетия. «Искусственный спутник» на соответствующем удалении от Земли... будет оставаться в стационарном положении над той же самой точкой земли и находиться в пределах видимости с практически половины поверхности Земли. Три повторительные станции, через 120° на соответствующей орбите, будут способны охватить телевизионным вещанием и микроволновой связью практически всю поверхность Земли».

1963 НАСА претворяет в жизнь концепцию Кларка и выводит на геосинхронную, но не геостационарную орбиту первые два спутника Syncom. Период их вращения соответствовал периоду вращения Земли, но их орбиты были наклонены и вытянуты.

1964 Запущен спутник Syncom 3, который кружил точно над экватором и стал первым геостационарным спутником.

Подписано соглашение о создании Международного консорциума  спутниковой связи – ИНТЕЛСАТ. Это соглашение подписали: США, Англия, Франция, Германия, Япония, Канада, Бразилия, Италия и др. – всего 11 стран. Задачи Консорциума: разработка, проектирование, изготовление и эксплуатация системы глобальной коммерческой спутниковой связи. С помощью этой системы к 1987 году обеспечивалось около двух третей международных каналов спутниковой связи, а в настоящее время – около одной трети.

1965 В Советском Союзе была создана и введена в эксплуатацию система спутниковой связи «Молния_1», по названию спутника; снимок см в приложение 1. Эта система позволила организовать связь Москвы (станции в Медвежьих Озерах и Щелково) с районами Дальнего Востока (станции в Уссурийске и Петропавловске-Камчатском), Сибири (станция в Улан Удэ), Средней Азии (станция в районе озера Балхаш). В системе «Молния_1» передавались программы телевизионного и радиовещания, полосы газет, а также осуществлялась телефонно-телеграфная связь с указанными районами.

1967 В СССР были введены еще 20 станций, которые с уже имеющимися образовали первую в мире систему распределения телевидения «Орбита» (гл. конструктор Н.В.Талызин, НИИР).[11]

 

1.2 Организация  спутникового ствола

 

Спутник - устройство связи, которое принимает сигналы  от земной станции (ЗС), усиливает и  транслирует в широковещательном режиме одновременно на все ЗС, находящиеся в зоне видимости спутника. Спутник не инициирует и не терминирует никакой пользовательской информации за исключением сигналов контроля и коррекции возникающих технических проблем и сигналов его позиционирования. Спутниковая передача начинается в некоторой ЗС, проходит через спутник, и заканчивается в одной или большем количестве ЗС.

Система спутниковой  связи состоит из трех базисных частей: космического сегмента, сигнальной части  и наземного сегмента, на примере системы «Iridium» (рис. 1.1).

Космический сегмент  охватывает вопросы проектирования спутника, расчета орбиты и запуска  спутника. Сигнальная часть включает в себя вопросы используемого  спектра частоты, влияния расстояния на организацию и поддержание связи, источники интерференции сигнала, схем модуляции и протоколов передачи. Наземный сегмент включает размещение и конструкцию ЗС, типы антенн, используемых для различных приложений, схемы мультиплексирования, обеспечивающие эффективный доступ к каналам спутника. Космический сегмент, сигнальная часть и наземный сегмент поясняются в следующих разделах.[9]

Рис. 1.1 Система "Iridium"

 

1.3 Космический  сегмент

 

Современные спутники связи, используемые в коммерческих ССС, занимают геосинхронные орбиты, в которых период орбиты равен периоду отметки на поверхности Земли. Это становится возможным при размещении спутника над заданным местом Земли на расстоянии 35800 км в плоскости экватора.

Большая высота, требуемая для поддержания геосинхронной  орбиты спутника, объясняет нечувствительность спутниковых сетей к расстоянию. Длина пути от заданной точки на Земле через спутник на такой орбите до другой точки Земли в четыре раза больше расстояния по поверхности Земли между двумя ее максимально удаленными точками. В настоящее время наиболее плотно занятая орбитальная дуга равна 76° (приблизительно; 67° по 143° западной долготы). Спутники этого сектора обеспечивают связь стран Северной, Центральной и Южной Америки.

Главными компонентами спутника являются его конструкционные элементы; системы управления положением, питания; телеметрии, трекинга, команд; приемопередатчики и антенна (рис. 1.2).

Рис. 1.2 Спутник  со стабилизацией вращения.

 

Структура спутника обеспечивает функционирование всех его  компонентов. Предоставленный сам себе спутник в конечном счете перешел бы к случайным вращениям, превратившись в бесполезное для обеспечения связи устройство. Устойчивость и нужная ориентация антенны поддерживается системой стабилизации (рис. 1.3). Размер и вес спутника ограничены в основном возможностями транспортных средств, требованиям к солнечным батареям и объему топлива для жизнеобеспечения спутника (обычно в течение десяти лет).

 Рис. 1.3 Спутник  с трехосевой стабилизацией.

 

Телеметрическое оборудование спутника используется для передачи на Землю информации о его положении. В случае необходимости коррекции положения, на спутник передаются соответствующие команды, по получении которых включается энергетическое оборудование, и коррекция осуществляется.[5]

 

1.4 Сигнальная часть

 

Ширина полосы.

Ширина полосы (bandwight) спутникового канала характеризует  количество информации, которую он может передавать в единицу времени. Типичный спутниковый приемопередатчик имеет ширину полосы 36 МГц .

Обычно ширина полосы спутникового канала велика. Например, один цветной телевизионный канал занимает полосу 6 МГц. Каждый приемопередатчик на современных спутниках связи поддерживает полосу в 36 МГц, при этом спутник несет 12 или 24 приемопередатчиков, что дает в результате 432 МГц или 864 МГц, соответственно.

Спектр частот.

Спутники должны преобразовывать частоту получаемых от ЗС сигналов перед ретрансляцией  их к ЗС, поэтому спектр частот спутника связи выражен в парах. Из двух частот в каждой паре, нижняя используется для передачи от спутника к ЗС (нисходящие потоки), верхняя – для передачи от ЗС на спутник (восходящие потоки). Каждая пара частот называется полосой.

Современные спутниковые  каналы чаще всего применяют одну из двух полос: С-полосу (от спутника к  ЗС в области 6 ГГц и обратно в области 4 ГГц), или Ku- полосу (14 ГГц и 12 ГГц, соответственно). Каждая полоса частот имеет свои характеристики, ориентированные на разные задачи связи  пример в таблице 1.

Табл.1 Характеристики полос частот.

Спутниковые диа- пазоны полос пе-редачи, L (GHz)

Полоса, С (MHz)

Диапазон  частот, Ku (GHz)

Доступная ширина, Ka (Hz)

1.6/1.5

15

6/4

500

14/12

500

30/120

2500


 

Большинство действующих  спутников используют С-полосу. Передача в С-полосе может покрывать значительную область земной поверхности, что делает спутники особенно пригодными для сигналов широковещания. С другой стороны, сигналы С-полосы являются относительно слабыми и требуют развитых и достаточно дорогих антенн на ЗС. Важная особенность сигналов С-полосы – их устойчивость к атмосферному шуму. Атмосфера Земли почти прозрачна для сигналов в диапазоне 4/6 ГГц. К сожалению, этим же фактором обусловлено то, что сигналы С-полосы более всего подходят для наземных двухточечных микроволновых передач, портящих более слабые спутниковые сигналы. Данное обстоятельство заставляет размещать ЗС, использующие при передаче С-полосу, за много километров от городских центров и мест плотного проживания населения.

Передача в Ku- полосе имеет противоположные свойства. Луч при такой передаче сильный, узкий, что делает передачу идеальной для двухточечных соединений или соединений от точки к нескольким точкам. Наземные микроволновые сигналы никоим образом не влияют на сигналы Ku-полосы, и ЗС Ku-полосы могут быть размещены в центрах городов. Естественная большая мощность сигналов Ku-полосы позволяет обойтись меньшими, более дешевыми антеннами ЗС. К сожалению, сигналы Ku-полосы чрезвычайно чувствительны к атмосферным явлениям, особенно туману и сильному дождю. Хотя подобные погодные явления, как известно, воздействуют на небольшую область в течение краткого времени, результаты могут быть достаточно серьезны, если такие условия совпадут с ЧНН (час наибольшей нагрузки, например 4 часа пополудни, полдень пятницы).

Передача речи и данных.

Мультиплексирование с разделением частот (FDM) широко используется для мультиплексирования нескольких речевых каналов или каналов данных на один спутниковый приемопередатчик.

В FDM волновая форма  каждого индивидуального телефонного  сигнала фильтруется для ограничения  ширины полосы диапазоном звуковых частот между 300 и 3400 Гц, затем преобразуется. Далее сигналы двенадцати каналов мультиплексируются в составной сигнал основной полосы. Каждая группа составлена из телефонных сигналов, размещенных в интервалах с шириной полосы равной 4 кГц. Затем несколько групп повторно мультиплексируются и формируют большую группу, которая может содержать от 12 до 3600 отдельных речевых каналов.

Мультиплексирование с временным разделением (TDM) –  другой метод для передачи речи и /или данных по одному каналу. Если в FDM для передачи речевого сигнала (или данных) назначаются отдельные сегменты частоты внутри всей полосы, в методе TDM передача ведется по всей выделенной полосе частот. В исходящем канале повторяемые базовые временные периоды, называемые иногда фреймами (frame), разделены на фиксированное число тактов, которые выделяются последовательно для передачи сигналов входящих речевых каналов и каналов данных. Для предохранения от возможных потерь информации используются накопители (буферы).[5]

Информация о работе Характеристика спутниковых систем связи