Биология в современном естествознании

Автор работы: Пользователь скрыл имя, 05 Марта 2014 в 12:21, реферат

Краткое описание

В основе современной биологии лежат пять фундаментальных принципов: клеточная теория, эволюция, генетика, гомеостаз и энергия. В наше время биология — стандартный предмет в средних и высших учебных заведениях всего мира. Ежегодно публикуется более миллиона статей и книг по биологии, медицине и биомедицине.

Вложенные файлы: 1 файл

Реф.doc

— 175.50 Кб (Скачать файл)

Введение

В современном представлении биология – совокупность наук о живой природе, об огромном многообразии вымерших и ныне населяющих Землю живых существ, их строении и функциях, происхождении, распространении и развитии, связях друг с другом и с неживой природой. Биология устанавливает общие и частные закономерности, присущие жизни во всех её проявлениях (обмен веществ, размножение, наследственность, изменчивость, приспособляемость, рост, раздражимость, подвижность и др.).

Биоло́гия (греч. βιολογία — βίος, биос, «жизнь»; др.-греч. λόγος –  учение) – наука о жизни (живой природе), одна из естественных наук, предметом которой являются живые существа и их взаимодействие с окружающей средой. Биология изучает все аспекты жизни, в частности, структуру, функционирование, рост, происхождение, эволюцию и распределение живых организмов на Земле. Классифицирует и описывает живые существа, происхождение их видов, взаимодействие между собой и с окружающей средой.

Как особая наука биология выделилась из естественных наук в XIX веке, когда учёные обнаружили, что живые организмы обладают некоторыми общими для всех характеристиками. Термин «биология» был введён независимо несколькими авторами: Фридрихом Бурдахом в 1800 году, в 1802 году Г. Р. Тревиранусом и Жаном Батистом Ламарком.

В основе современной биологии лежат пять фундаментальных принципов: клеточная теория, эволюция, генетика, гомеостаз и энергия. В наше время биология — стандартный предмет в средних и высших учебных заведениях всего мира. Ежегодно публикуется более миллиона статей и книг по биологии, медицине и биомедицине.

 

 

1 Биология и её предмет. История биологии

 

Биология (от греч. bios — жизнь, logos — наука) — наука о жизни, об общих закономерностях существования и развития живых существ. Предметом ее изучения являются живые организмы, их строение, функции, развитие, взаимоотношения со средой и происхождение. Подобно физике и химии она относится к естественным наукам, предметом изучения которых является природа.

Хотя концепция биологии как особой естественной науки возникла в XIX веке, биологические дисциплины зародились ранее в медицине и естественной истории. Обычно их традицию ведут от таких античных учёных как Аристотель и Гален через арабских медиков аль-Джахиза, ибн-Сину, ибн-Зухра и ибн-аль-Нафиза.

В эпоху Возрождения биологическая мысль в Европе была революционизирована благодаря изобретению книгопечатания и распространению печатных трудов, интересу к экспериментальным исследованиям и открытию множества новых видов животных и растений в эпоху Великих географических открытий. В это время работали выдающиеся умы Андрей Везалий и Уильям Гарвей, которые заложили основы современной анатомии и физиологии. Несколько позже Линней и Бюффон совершили огромную работу по классификации форм живых и ископаемых существ. Микроскопия открыла для наблюдения ранее неведомый мир микроорганизмов, заложив основу для развития клеточной теории. Развитие естествознания, отчасти благодаря появлению механистической философии, способствовало развитию естественной истории.

К началу XIX века некоторые современные биологические дисциплины, такие как ботаника и зоология, достигли профессионального уровня. Лавуазье и другие химики и физики начали сближение представлений о живой и неживой природе. Натуралисты, такие как Александр Гумбольдт исследовали взаимодействие организмов с окружающей средой и его зависимость от географии, закладывая основы биогеографии, экологии и этологии. В XIX веке развитие учения об эволюции постепенно привело к пониманию роли вымирания и изменчивости видов, а клеточная теория показала в новом свете основы строения живого вещества. В сочетании с данными эмбриологии и палеонтологии эти достижения позволили Чарльзу Дарвину создать целостную теорию эволюции путём естественного отбора. К концу XIX века идеи самозарождения окончательно уступили место теории инфекционного агента как возбудителя заболеваний. Но механизм наследования родительских признаков всё ещё оставался тайной.

В начале XX века Томас Морган и его ученики заново открыли законы, исследованные ещё в середине XIX века Грегором Менделем, после чего начала быстро развиваться генетика. К 1930-м годам сочетание популяционной генетики и теории естественного отбора породило современную эволюционную теорию или неодарвинизм. Благодаря развитию биохимии были открыты ферменты и началась грандиозная работа по описанию всех процессов метаболизма. Раскрытие структуры ДНК Уотсоном и Криком дало мощный толчок для развития молекулярной биологии. За ним последовало постулирование центральной догмы, расшифровка генетического кода, а к концу XX века — и полная расшифровка генетического кода человека и ещё нескольких организмов, наиболее важных для медицины и сельского хозяйства. Благодаря этому появились новые дисциплины геномика и протеомика. Хотя увеличение количества дисциплин и чрезвычайная сложность предмета биологии породили и продолжают порождать среди биологов всё более узкую специализацию, биология продолжает оставаться единой наукой, и данные каждой из биологических дисциплин, в особенности геномики, применимы во всех остальных.

 

2 Традиционная или натуралистическая биология

Ее объектом изучения является живая природа в ее естественном состоянии и нерасчлененной целостности — «Храм природы», как называл ее Эразма Дарвина. Истоки традиционной биологии восходят к средним векам, хотя вполне естественно здесь вспомнить и работы Аристотеля, который рассматривал вопросы биологии, биологического прогресса, пытался систематизировать живые организма («лестница Природы»). Оформление биологии в самостоятельную науку — натуралистическую биологию приходится на 18-19 века. Первый этап натуралистической биологии ознаменовался созданием классификаций животных и растений. К ним относятся известная классификация К. Линнея (1707 — 1778), являющаяся традиционной систематизацией растительного мира, а также классификация Ж.-Б. Ламарка, применившего эволюционный подход к классифицированию растений и животных. Традиционная биология не утратила своего значения и в настоящее время. В качестве доказательства приводят положение экологии среди биологических наук а также во всем естествознании. Ее позиции и авторитет в настоящее время чрезвычайно высоки, а она в первую очередь основывается на принципах традиционной биологии, поскольку исследует взаимоотношения организмов между собой (биотические факторы) и со средой обитания (абиотические факторы).

 

3 Современная биология и физико-химические методы

На протяжении всей истории развития биологии физические и химические методы были важнейшим инструментом исследования биологических явлений и процессов живой природы. Важность внедрения таких методов в биологию подтверждают экспериментальные результаты, полученные с помощью современных методов исследования, зародившихся в. смежных отраслях естествознания - физике и химии. В этой связи неслучайно в 1970-х годах в отечественном научном лексиконе появился новый термин "физико-химическая биология". Появление этого термина свидетельствует не только о синтезе физических, химических и биологических знаний, но и о качественно новом уровне развития естествознания, в котором происходит непременно взаимное обеспечение отдельных его отраслей. Физико-химическая биология содействует сближению биологии с точными науками - физикой и химией, а также становлению естествознания как единой науки о природе.

В то же время изучение структуры, функций и репродукции фундаментальных молекулярных структур живой материи не лишает биологию ее индивидуальности и особого положения в естествознании, так как молекулярные структуры наделены биологическими функциями и обладают вполне определенной спецификой.

Внедрение физических и химических методов способствовало развитию экспериментальной биологии, у истоков которой стояли крупные ученые: К. Бернар (1813- 1878), Г. Гельмгольц (1821- 1894), Л. Пастер (1822- 1895), И.М. Сеченов (1829-1905), И.П. Павлов (1849-1936), С.Н. Виноградский (1856-1953), К.А. Тимирязев (1843-1920), И.И. Мечников (1845-1916) и многие другие. 

Экспериментальная биология постигает сущность процессов жизнедеятельности преимущественно с применением точных физических и химических методов, при этом иногда прибегая к расчленению биологической целостности, т. е. живого организма с целью проникновения в тайны его функционирования.

Современная экспериментальная биология вооружилась новейшими методами, позволяющими проникнуть в субмикроскопический, молекулярный и надмолекулярный мир живой природы. Можно назвать несколько широко применяемых методов: метод изотопных индикаторов, методы рентгеноструктурного анализа и электронной микроскопии, методы фракционирования, методы прижизненного анализа и др. Дадим их краткую характеристику.

Метод изотопных индикаторов, ранее называемый методом меченых атомов, был предложен вскоре после открытия радиоактивности. Сущность его заключается в том, что с помощью радиоактивных (меченых) атомов, введенных в организм, прослеживаются передвижение и превращение веществ в организме.

С помощью данного метода удалось установить динамичность процессов обмена веществ, проследить за их начальной, промежуточной и конечной стадиями, выявить влияние отдельных структур организма на протекание процессов. Метод изотопных индикаторов позволяет исследовать процессы обмена в живом организме. Это одно из его достоинств. Постоянное обновление белков и мембран, биосинтез белков и нуклеиновых кислот, промежуточный обмен углеводов и жиров, а также многие другие важные микропроцессы были открыты с помощью данного метода.

Рентгеноструктурный анализ оказался весьма эффективным при исследовании структур макромолекул, лежащих в основе жизнедеятельности живых организмов. Он позволил установить двухцепочечное строение (двойную спираль) молекул - носителей информации и нитевидную структуру белков. С появлением рентгеноструктурных исследований родилась молекулярная биология.

Возможности молекулярной биологии гораздо расширились с применением электронно-микроскопических исследований, позволивших установить многослойное строение оболочки нервных волокон состоящих из чередующихся белковых и липидных слоев. Электронно-микроскопические наблюдения дали возможность расшифровать молекулярную организацию живой клетки и механизм функционирования мембран, на основании которых в начале 50-х годов была создана современная мембранная теория; родоначальники ее - английские физиологи А. Ходжкин (1914- 1994), А. Хаксли (р. 1917) а также австралийский физиолог Дж. Эклс.

Мембранная теория имеет важное общебиологическое значение. Сущность ее заключается в следующем. По обе стороны мембраны за счет встречного потока ионов калия и натрия создается разность потенциалов. Данный процесс сопровождается возбуждением и деполяризацией ранее находящейся в покое поляризованной мембраны и заменой знака ее электрического потенциала. Изменение разности потенциалов едино для всех мембранных систем. Оно обеспечивает одновременно функции барьеров и своеобразных насосных механизмов. Такие функции мембранных систем способствуют активному проникновению веществ как внутрь, так и за пределы клетки. За счет мембран достигается и пространственная изоляция структурных элементов организма.

Раскрытие структуры мембранных систем и механизма их функционирования - крупное достижение не только в биологии, но и в естествознании в целом.

В физико-химической биологии широко применяются различные методы фракционирования, основанные на том или ином физическом либо химическом явлении. Довольно эффективный метод фракционирования предложил русский биолог и биохимик М.С. Цвет (1872-1919). Сущность его метода заключается в разделении смеси веществ, основанном на поглощении поверхностью твердых тел компонентов разделенной смеси, на ионном обмене и на образовании осадков.

Радиоспектроскопия, скоростной рентгеноструктурный анализ, ультразвуковое зондирование и многие другие современные средства исследования составляют арсенал методов прижизненного анализа. Все эти методы не только широко применяются в физико-химической биологии, но и взяты на вооружение современной медициной. Сейчас ни одно клиническое учреждение не обходится без рентгеноскопической, ультразвуковой и другой аппаратуры, позволяющей без ущерба для пациента определить структурные, а иногда функциональные изменения в организме.

Техника эксперимента современной физико-химической биологии обязательно включает те или иные вычислительные средства, которые в значительной степени облегчают трудоемкую работу экспериментатора и позволяют получить более достоверную информацию о свойствах исследуемого живого объекта.

Характерная особенность современной физико-химической биологии - ее стремительное развитие. Трудно перечислить все ее достижения, но некоторые из них заслуживают особого внимания. В 1957 г. был реконструирован вирус табачной мозаики из составляющих его компонентов. В 1968- 1971 гг. произведен искусственный синтез гена для одной из транспортных молекул путем последовательного введения в пробирку с синтезируемым геном новых нуклеотидов. Весьма важными оказались результаты исследований по расшифровке генетического кода: было показано, что при введении искусственно синтезированных молекул в бесклеточную систему, т. е. систему без живой клетки, обнаруживаются информационные участки, состоящие из трех последовательных нуклеотидов, являющихся дискретными единицами генетического кода. Авторы этой работы - американские биохимики М. Ниренберг (р. 1927), X. Корана (р. 1922) и Р. Холли (р.1922).

Расшифровка различных видов саморегуляции - также важное достижение физико-химической биологии. Саморегуляция как характерное свойство живой природы проявляется в разных формах, таких, как передача наследственной информации - генетического кода; регуляция биосинтетических процессов белка (ферментов) в зависимости от характера субстрата и под контролем генетического механизма; регуляция скоростей и направлений ферментных процессов; регуляция роста и морфогенеза, т.е. образования структур разного уровня организации; регуляция анализирующей и управляющей функций нервной системы.

Живые организмы - весьма сложный объект для исследований. Но все же современные технические средства позволяют все глубже и глубже проникнуть в тайны живой материи.

 

4 Эволюционная биология. История эволюционного учения

Эволюционная биология — раздел биологии, изучающий происхождение видов от общих предков, наследственность и изменчивость их признаков, размножение и разнообразие форм в историческом контексте.

Информация о работе Биология в современном естествознании