Основное содержание механистической картины мира

Автор работы: Пользователь скрыл имя, 03 Февраля 2014 в 11:58, реферат

Краткое описание

Становление механистической картины мира справедливо связывают с именем Галилео Галилея, который установил законы движения свободно падающих тел и сформулировал механический принцип относительности. Но главная заслуга Галилея в том, что он впервые применил для исследования природы экспериментальный метод вместе с измерениями исследуемых величин и математической обработкой результатов измерений. Если эксперименты спорадически ставились и раньше, то математический их анализ впервые систематически стал применять именно он.

Вложенные файлы: 1 файл

ксе гриша.docx

— 52.37 Кб (Скачать файл)

                                                  ВВЕДЕНИЕ

               В основе современного научного миропонимания лежит признание фундаментальности пространства и времени. Эта традиция восходит к временам Галилея и Ньютона.

               Становление механистической картины мира справедливо связывают с именем Галилео Галилея, который установил законы движения свободно падающих тел и сформулировал механический принцип относительности. Но главная заслуга Галилея в том, что он впервые применил для исследования природы экспериментальный метод вместе с измерениями исследуемых величин и математической обработкой результатов измерений. Если эксперименты спорадически ставились и раньше, то математический их анализ впервые систематически стал применять именно он.

                 Так Ньютон всю свою механику строил на законах, в которых в качестве физических величин фигурировали пространственные координаты x,y,z и время t. Он выдвинул совершенно новый принцип исследования природы, согласно которому вывести два или три общих начала движения из явлений, и после этого изложить, каким образом свойства и действия всех телесных вещей вытекают из этих явных начал, - было бы очень важным шагом в философии, хотя причины этих начал и не были еще открыты.

                Физика как наиболее разработанная область естествоиспытания, задавала фон для развития других отраслей науки. Последние же тяготели к рационально- методологическим принципам и понятиям физики, механики.

                Открытие принципов механики означает подлинно революционный переворот, который связан с переходом от натурфилософских догадок и гипотез о «скрытых» качествах и т.п. спекулятивных измышлений к точному экспериментальному естествознанию, в котором все предположения, гипотезы и теоретические построения проверялись наблюдениями и опытом.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Смена геоцентрической картины мира на гелиоцентрическую.

            В эпоху Возрождения, период между 15 и 16 веками, произошла первая научная революция. Эту эпоху принято ассоциировать с именем Великого итальянца Леонардо да Винчи - он неоднократно говорил о несостоятельности геоцентрической системы Птолемея; он изобрел множество технических средств в механике; круг его интересов распространялся от математики и физики до анатомии и живописи. Изучение анатомии человека запрещалось церковью, однако Леонардо детально изучил ее. Да Винчи обращал внимание на необходимость использования практики, эксперимента в науке. Об этом говорят и в наше время.

             Геоцентрическая модель строения Вселенной, царившая в естествознании около 14 веков, была наконец заменена гелиоцентрической в 1543 году. Ее автор, польский астроном Николай Коперник, низвел Землю до уровня рядовой планеты, Солнце он поместил в центре системы и все планеты вместе с Землей двигались вокруг Солнца по круговым орбитам. Коперник предположил, что движение есть естественное свойство небесных и земных объектов, подчиненное единым законам. Это был удар по аристотелевскому “перводвигателю”, приводящему в движение Вселенную.

              Коперник впервые показал, что наши чувства не всегда дают нам реальную картину окружающего, и что необходимо не только наблюдать но и опытно проверять. Здесь он развил идею Платона о том, что органы чувств не всегда дают верную и полную информацию, и поэтому практика – критерий истины. Это учение подрывало устои католической церкви - если Земля не центр мироздания, значит и человек не есть венец творения, высшая цель мироздания. Все последователи Коперника были подвергнуты гонениям, а сам он избежал инквизиции в виду естественной смерти.    

              Взгляды Коперника настолько меняли мировоззрение, что по праву их можно считать толчком к смене старой, геоцентрической картины мира на новую, гелиоцентрическую.

              Продолжателем идей Коперника стал Джордано Бруно - он отстаивал положения, что Вселенная бесконечна, что у нее нет центра; он говорил о наличии множества тел подобных Солнцу и окружающих его планет. Идеи Бруно еще больше подрывали устои церкви, и в 1600 году он был сожжен как еретик.

              Продолжением идей Коперника и Бруно стали идеи Галилея, Кеплера и Ньютона в 17 - 19 веках. Этот период называют еще естествознанием нового времени. Это было время Великих географических открытий, появления новых экономических и производственных отношений. Этот период связывают с появлением новой механической картины мира.     Галилей, впервые применив изобретенную им трубу, обнаружил, что у Юпитера есть спутники, что Солнце вращается вокруг своей оси и у него есть пятна, а на Луне есть горы - все это не вписывалось в теорию Аристотеля о противоположности земного и небесного и подтверждало теорию Коперника. Галилей опроверг Аристотеля и в том, что равномерное движение требует постоянной прилагаемой силы. Он также исследовал свободное падение тел и установил, что скорость не зависит от массы тела.   Но главное, что Галилей дал доказательство верности учения Коперника - не только астрономические но и математические.

             Но также как и во времена основателей гелиоцентрической картины Вселенной, церковь не могла допустить распространения этих мыслей, и перед угрозой сожжения Галилею пришлось отречься от своих мыслей.

             Но научную мысль уже невозможно было удержать. Включая в исследование наблюдения, анализ, рассуждения, обобщения Иоганн Кеплер в 1609 году сформулировал законы движения планет. Кроме этого Кеплер предложил теорию предсказаний солнечных и лунных затмений, уточнил величину расстояния между Землей и Солнцем. Кеплер дал толчок развитию динамики в механике. Церковь также запрещала некоторые его книги, но сам он относился к этому без сарказма: “Мне все равно, кто будет меня читать: люди нынешнего или люди будущего поколения. Разве господь Бог не дожидался 6 тысяч лет, чтобы кто-нибудь занялся созерцанием его творений”.

             Французский ученый Рене Декарт предложил теорию вихрей, по которой все пространство заполнено подвижным веществом, способным образовывать вихри. Эти вихри образуют потоки и вовлекают в движение все в мире. Но главная заслуга Декарта в развитии геометрии, как части математической науки (знаменитые декартовы координаты - оси абсцисс и ординат)

              Первая научная революция завершилась появлением трудов профессора Кембриджского университета Исаака Ньютона, где он изложил систему законов механики, всемирного тяготения; систематизировал все значительное в механике. Он сформулировал 3 закона движения и Закон Всемирного тяготения.

              Закон Всемирного тяготения оказал огромное влияние на развитие естествознания. Впервые открытый закон оказывался универсальным законом природы, которому подчинялось и малое и большое. В результате появления этой и предшествующих теорий сформировалась механистическая картина мира, где все можно было, как казалось, объяснить на основе простых законов. Природа представилась некой машиной и чтобы познать ее до конца необходимо просто разобрать механизм по составным частям.

 

 

2. Галилео Галилей и его роль в становлении классической науки

Работа по обоснованию гелиоцентризма была начата Галилео Галилеем (1564–1642), труды которого предопределили весь облик классической, а во многом и современной науки. Именно им были заложены основы нового типа мировоззрения, а также новой науки – математического  опытного естествознания. Чтобы глубже проникнуть в математические законы и постичь истинный характер природы, Галилей усовершенствовал и изобрел  множество технических приборов и инструментов – линзу, телескоп, микроскоп, магнит, воздушный термометр, барометр и др. Их использование придало естествознанию новое, неведомое грекам измерение. Прежние размышления о Вселенной уступили место экспериментальному исследованию с целью постижения действующих в ней универсальных математических законов.

Очень важно, что свою систематическую  ориентацию на опыт Галилей сочетал  со стремлением к его математическому  осмыслению. И ставил его так высоко, что считал возможным полностью  заменить традиционную логику как бесполезное  орудие мышления математикой, которая  только и способна научить человека искусству доказательства.

Математический аналитический  метод Галилея привел его к  механистическому истолкованию бытия, позволил ему сформулировать понятие  физического закона в его современном  понимании. Можно считать, что, начиная  с работ этого ученого, наука  полностью порвала с сугубо качественным истолкованием природы. Особое значение для утверждения науки нового типа имели открытия Галилея в  области механики и астрономии. Именно они заложили прочный фундамент  в обоснование гелиоцентризма.

 

 

Гелиоцентризм – картина мира, представляющая центром Вселенной Солнце, вокруг которого вращаются все планеты, в том числе и Земля.

Одной из серьезнейших проблем, препятствующих утверждению нового мировоззрения, было давнее убеждение, сложившееся  еще в античности и поддерживавшееся на протяжении Средневековья, что между  земными и небесными явлениями  и телами существует принципиальная разница. Со времен Аристотеля считалось, что небеса – место нахождения идеальных тел, состоящих из эфира и вращающихся по идеальным круговым орбитам вокруг Земли. Земные же тела возникают и функционируют совсем по другим законам. Поэтому прежде чем создавать всеобъемлющие теории и открывать законы природы, ученые Нового времени должны были опровергнуть деление на земное и небесное. Первый шаг в этом направлении был сделан Галилеем.

После того, как в 1608 г. была изобретена зрительная труба, Галилей усовершенствовал ее и превратил в телескоп с 30-кратным увеличением. С его помощью он совершил целый ряд выдающихся астрономических открытий. Среди них - горы на Луне, пятна на Солнце, фазы Венеры, четыре крупнейших спутника Юпитера. Он же первый увидел, что Млечный Путь представляет собой скопление огромного множества звезд. Все эти факты доказывали, что небесные тела – это не эфирные создания, а вполне материальные предметы и явления. Ведь не может быть на идеальном теле гор, как на Луне, или пятен, как на Солнце.

С помощью своих открытий в механике Галилей разрушил догматические  построения господствовавшей почти  в течение двух тысяч лет Аристотелевской  физики. Галилей выступил против мыслителя, авторитет которого считался бесспорным, и впервые проверил многие его  утверждения опытным путем, заложив  тем самым основы нового раздела  физики – динамики - науки о движении тел под действием приложенных сил. До этого единственным более или менее разработанным разделом физики была статика.

Статика – наука о равновесии тел под действием приложенных сил, основанная  Архимедом.

Также Галилей изучал свободное  падение тел и на основании  своих наблюдений выяснил, что оно  совершенно не зависит от веса или  состава тела. После этого он сформулировал  понятия скорости, ускорения, показал, что результатом действия силы на тело является не скорость, а ускорение.

Проанализировал Галилей и метательное  движение, на основании чего пришел к идее инерции, пока еще не сформулированной точно, но сыгравшей огромную роль в  дальнейшем развитии естествознания. В отличие от Аристотеля, полагавшего, будто все тела стремятся достичь  места, отведенного им природой, после  чего движение прекращается, Галилей  считал, что движущееся тело стремится  пребывать в постоянном равномерном  прямолинейном движении или в  покое, если только какая-нибудь внешняя  сила не остановит его или не отклонит от направления его движения. Идея инерции позволила опровергнуть одно из возражений противников гелиоцентризма, которые утверждали, что предметы, находящиеся на поверхности Земли, в случае ее движения неизбежно оказались  бы сброшенными с нее, и что  любой метательный снаряд, запускаемый  вверх под прямым углом, обязательно  приземлялся бы на некотором расстоянии от исходной точки броска. Понятие  инерции объясняло, что движущаяся Земля автоматически передавала свое движение всем находящимся на ней телам.

Еще одним возражением противников  гелиоцентризма было то, что мы не чувствуем  движения Земли. Ответ на него также  был дан Галилеем в сформулированном им классическом принципе относительности. Согласно этому принципу, никакими механическими опытами, проведенными внутри системы, невозможно установить, покоится система или движется равномерно и прямолинейно. Также классический принцип относительности утверждает, что между покоем и равномерным прямолинейным движением нет никакой разницы, они описываются одними и теми же законами. Равноправие движения и покоя, т.е. инерциальных систем - покоящихся или движущихся друг относительно друга равномерно и прямолинейно, Галилей доказывал рассуждениями и многочисленными примерами. Например, путешественник в каюте корабля с полным основанием считает, что книга, лежащая на его столе, покоится. Но человек на берегу видит, что корабль плывет, и он имеет все основания утверждать, что книга движется и притом с той же скоростью, что и корабль. Так движется на самом деле книга или покоится? На этот вопрос, очевидно, нельзя ответить просто «да» или «нет». Спор между путешественником и человеком на берегу был бы пустой тратой времени, если бы каждый из них отстаивал только свою точку зрения и отрицал точку зрения партнера. Они оба правы, и чтобы согласовать позиции, им нужно только признать, что в одно и то же время книга покоится относительно корабля и движется относительно берега вместе с кораблем.

Законы механики вместе с его  астрономическими открытиями подводили  ту физическую базу под гипотезу Коперника, которой сам ее творец еще не располагал. Из гипотезы гелиоцентрическая доктрина теперь начинала приобретать статус теории.

Но еще не был окончательно решен  вопрос о соотношении земных и  небесных движений, не было объяснено  движение самой Земли. Реальное движение планет также мало соответствовало  их описанию в гелиоцентрической  гипотезе Коперника (круговое движение), как и в геоцентризме Птолемея.

 

 

 

 

 

3.  Ход и содержание научной революции XVI-XVII вв.

Отрезок времени примерно от даты публикации работы Николая Коперника  «Об обращениях небесных сфер», т.е. с 1543 г., до деятельности Исаака Ньютона  обычно называют периодом «научной революции». Научная революция XVI-XVII в.в. представляет собой мощное движение, которое обретает характерные черты в работах  Галилея, идеях Бэкона, Декарта и  впоследствии получает свое завершение в классическом механическом образе Вселенной, подобной часовому механизму.

Все началось с астрономической  революции Коперника, Тихо Браге, Кеплера  и Галилея – наиболее выдающихся ее представителей. Шаг за шагом  меняется образ мира, с трудом, но неуклонно разрушаются опоры  космологии Аристотеля – Птолемея. Коперник помещает в центр мира вместо Земли Солнце. Тихо Браге устраняет материальные сферы, которые согласно старой космологии вовлекали в свое движение планеты, а идею материальной сферы заменяет современной идеей орбиты. Кеплер предлагает математическую систематизацию открытий Коперника и завершает революционный переход от теории кругового движения планет («совершенного» в понимании старой космологии) к теории эллиптического движения. Галилей показывает ошибочность различения физики земной и физики небесной, доказывая, что Луна имеет ту же природу, что и Земля, и формулирует принцип инерции. Ньютон в своей теории гравитации объединяет физику Галилея и физику Кеплера.

Информация о работе Основное содержание механистической картины мира