Особенности и закономерности развития современного естествознания

Автор работы: Пользователь скрыл имя, 12 Июня 2014 в 10:26, курсовая работа

Краткое описание

Целью данной работы является систематизация, углубление и закрепление знаний, полученных в процессе изучения дисциплины «Основы научных исследований».
Предмет курсовой работы: изучение современной системы естественнонаучного знания.
Для достижения поставленной цели необходимо решить следующие задачи:
Проанализировать основные черты современного естествознания как науки;
Обосновать развитие современного естествознание и будущее науки;
Рассмотреть основные концепции современного естественнонаучного знания.

Вложенные файлы: 1 файл

KSE2.docx

— 87.00 Кб (Скачать файл)

Анализ особенностей современного естествознания позволяет отметить такую его принципиальную особенность, как невозможность свободного экспериментирования с основными объектами. Иными словами, реальный естественно-научный эксперимент оказывается опасным для жизни и здоровья людей. Дело в том, что пробуждаемые современной наукой и техникой мощные природные силы при неумелом обращении с ними способны привести к тяжелейшим локальным, региональным и даже глобальным кризисам и катастрофам.

Исследователи науки отмечают, что современное естествознание органически срастается с производством, техникой и бытом людей, превращаясь в важнейший фактор прогресса всей нашей цивилизации. Оно уже не ограничивается исследованиями отдельных кабинетных ученых, а включает в свою орбиту комплексные коллективы исследователей самых разных научных направлений. В процессе своей исследовательской деятельности представители различных естественных дисциплин все более отчетливо начинают осознавать тот факт, что Вселенная представляет собой системную целостность с недостаточно понятными законами развития и глобальными парадоксами, в которой жизнь каждого человека связана с космическими закономерностями и ритмами. Универсальная связь процессов и явлений во Вселенной требует комплексного, адекватного их природе изучения и, в частности, глобального моделирования на основе метода системного анализа. В соответствии с этими задачами в современном естествознании все более широкое применение получают методы системной динамики, синергетики, теории игр, программно-целевого управления, на основе которых составляются прогнозы развития сложных природных процессов.

Современные представления о глобальном эволюционизме и синергетике позволяют описать развитие природы как последовательную смену рождающихся из хаоса структур, временно обретающих стабильность, а затем вновь стремящихся к хаотическим состояниям. Кроме того, многие природные комплексы предстают как сложноорганизованные, многофункциональные, открытые, неравновесные системы, развитие которых носит малопредсказуемый характер. В этих условиях дальнейшая эволюция сложных природных объектов оказывается принципиально непредсказуемой и сопряжена со многими случайными факторами, могущими стать основаниями для новых форм эволюции.

Все перечисленные изменения протекают в рамках продолжающейся в настоящее время очередной глобальной научной революции, которая завершится, скорее всего, к середине XXI в. Конечно, сейчас нам сложно себе представить облик будущей науки. Очевидно, что она будет отличаться как от классической, так и от современной (неклассической) науки. Однако некоторые перечисленные выше черты науки будущего просматриваются уже сейчас [6].

 

3 Современные концепции естественнонаучного знания

Среди множества концепций современного естествознания можно выделить те, которые составляют методологическую основу исследовательского аппарата практически всех наук. К ним относятся: общая теория систем, теория самоорганизации систем и теория управления (или организации). Это сравнительно молодые концепции. Они были разработаны в середине ХХ столетия и составили ядро постнеклассической науки.  Одним из основоположников общей теории систем считается австрийский, а позднее американский, биолог Л. фон Берталанфи (1901 — 1972), который выдвинул обобщенную системную концепцию, сделал многое для ее математического оформления, ввел понятие открытой системы, построил системную картину мира. 

Основы теории самоорганизации (синергетика) были разработаны в трудах химиков, получивших мировое признание — И. Пригожина, Д. Николиса, Г. Хакена в семидесятых годах ХХ столетия. Отцом синергетики по праву называют И. Пригожина (1917-2002) — лауреата Нобелевской премии, основателя и руководителя брюссельской научной школы химиков. Сегодня в мире функционирует свыше четырехсот научных институтов, основанных И. Пригожиным и занимающихся изучением проблем самоорганизации самых разнообразных систем. Весомый вклад в становление идей синергетики внесли российские ученые: химик А. П. Руденко, физик Ю. Л. Климонтович, математики А. Н. Колмогоров, Я. Г. Синая и многие другие. 

Основы науки об оптимальном управлении сложными системами (кибернетика) были заложены в сороковых годах прошлого века Н. Винером (1894— 1964). Большой вклад в развитие этого направления внесли наши соотечественники академики А. И. Берг, А. Н. Колмогоров и многие другие. 

Формализованный язык этих концепций сложен и его освоение требует глубокой специальной математической подготовки [7].

 

3.1 Общая теория систем

Общая теория систем — научная и методологическая концепция исследования объектов, представляющих собой системы. Она тесно связана с системным подходом и является конкретизацией его принципов и методов. Первый вариант общей теории систем был выдвинут Людвигом фон Берталанфи в 1930-е годы[8] . Его основная идея состоит в признании изоморфизма законов, управляющих функционированием системных объектов [8].

Идея наличия общих закономерностей при взаимодействии большого, но не бесконечного числа физических, биологических и социальных объектов была впервые высказана Берталанфи в 1937 году на семинаре по философии в Чикагском университете. Однако первые его публикации на эту тему появились только после Второй мировой войны. Фон Берталанфи также ввёл понятие и исследовал «открытые системы» — системы, постоянно обменивающиеся веществом и энергией с внешней средой.

Предметом исследований в рамках этой теории является изучение:

  • различных классов, видов и типов систем;

  • основных принципов и закономерностей поведения систем (например, принцип узкого места);

  • процессов функционирования и развития систем (например, равновесие, эволюция, адаптация, сверхмедленные процессы, переходные процессы).

В границах теории систем характеристики любого сложно организованного целого рассматриваются сквозь призму четырёх фундаментальных определяющих факторов:

  • устройство системы;

  • её состав (подсистемы, элементы);

  • текущее глобальное состояние системной обусловленности;

  • среда, в границах которой развёртываются все её организующие процессы.

В исключительных случаях, кроме того, помимо исследования названных факторов (строение, состав, состояние, среда), допустимы широкомасштабные исследования организации элементов нижних структурно-иерархических уровней, то есть инфраструктуры системы.

Одним из результатов Второй мировой войны было развитие ряда научно-технических направлений исследований. Например, кибернетика возникла в результате исследований и разработок по автоматизации зенитных установок. Ряд продолжают такие исследования, как «системный анализ» известной американской корпорации «RAND» (создана в1948) и британское «исследование операций»[11], к которым позже присоединяется и системная инженерия («системотехника» в советском переводе).

Так, во время Второй мировой войны около 1000 человек в Великобритании были заняты в разработках в области исследования операций. Около 200 таких исследований было выполнено для британской армии. Патрик Блэкетт работал в нескольких различных организациях в ходе войны. В начале войны, работая на королевскую британскую авиацию, он создал команду, известную как «Круг», работавшую по вопросам зенитной артиллерии [9].

Интеграция этих научно-технических направлений в основной состав общей теории систем обогатила и разнообразила её содержание.

Общесистемные принципы и законы

Как в трудах Людвига фон Берталанфи и в сочинениях Александра Богданова, так и в трудах менее значительных авторов, рассматриваются некоторые общесистемные закономерности и принципы функционирования и развития сложных систем. Среди таковых традиционно принято выделять:

- «гипотеза семиотической непрерывности». «Онтологическая ценность системных исследований, как можно думать, определяется гипотезой, которую можно условно назвать „гипотезой семиотической непрерывности“. Согласно этой гипотезе, система есть образ её среды. Это следует понимать в том смысле, что система как элемент универсума отражает некоторые существенные свойства последнего»: «Семиотическая» непрерывность системы и среды распространяется и за пределы структурных особенностей систем. «Изменение системы есть одновременно и изменение её окружения, причём источники изменения могут корениться как в изменениях самой системы, так и в изменениях окружения. Тем самым исследование системы позволило бы вскрыть кардинальные диахронические трансформации окружения» [10];

- «принцип обратной связи». Положение, согласно которому устойчивость в сложных динамических формах достигается за счёт замыкания петель обратной связи: «если действие между частями динамической системы имеет этот круговой характер, то мы говорим, что в ней имеется обратная связь»[46]:82. Принцип обратной афферентации, сформулированный академиком Анохиным П. К., являющийся в свою очередь конкретизацией принципа обратной связи, фиксирует что регулирование осуществляется «на основе непрерывной обратной информации о приспособительном результате»;

- «принцип организационной непрерывности». А. А. Богданов утверждает, что любая возможная система обнаруживает бесконечные «различия» на её внутренних границах, и, как следствие, любая возможная система принципиально разомкнута относительно своего внутреннего состава, и тем самым она связана в тех или иных цепях опосредования со всем универсумом — со своей средой, со средой среды и т. д. Данное следствие эксплицирует принципиальную невозможность «порочных кругов», понятых в онтологической модальности. «Мировая ингрессия в современной науке выражается какпринцип непрерывности. Он определяется различно; тектологическая же его формулировка проста и очевидна: между всякими двумя комплексами вселенной, при достаточном исследовании устанавливаются промежуточные звенья, вводящие их в одну цепь ингрессии»;

- «принцип совместимости» (М. И. Сетров), фиксирует, что «условием взаимодействия между объектами является наличие у них относительного свойства совместимости», то есть относительной качественной и организационной однородности;

- «принцип взаимно-дополнительных соотношений» (сформулировал А. А. Богданов), дополняет закон расхождения, фиксируя, что «системное расхождение заключает в себе тенденцию развития, направленную к дополнительным связям». При этом смысл дополнительных соотношений целиком «сводится к обменной связи: в ней устойчивость целого, системы, повышается тем, что одна часть усваивает то, что дезассимилируется другой, и обратно. Эту формулировку можно обобщить и на все и всякие дополнительные соотношения»[48]:196. Дополнительные соотношения являются характерной иллюстрацией конституирующей роли замкнутых контуров обратных связей в определении целостности системы. Необходимой «основой всякой устойчивой системной дифференциации является развитие взаимно-дополнительных связей между её элементами». Данный принцип применим по отношению ко всем деривативам сложно организованных систем;

- «эакон необходимого разнообразия» (У. Р. Эшби). Весьма образная формулировка этого принципа фиксирует, что «только разнообразие может уничтожить разнообразие». Очевидно, что рост разнообразия элементов систем как целых может приводить как к повышению устойчивости (за счёт формирования обилия межэлементных связей и обусловливаемых ими компенсаторных эффектов), так и к её снижению (связи могут и не носить межэлементного характера в случае отсутствия совместимости или слабой механизации, напр., и приводить к диверсификации);

- «закон иерархических компенсаций» (Е. А. Седов) фиксирует, что «действительный рост разнообразия на высшем уровне обеспечивается его эффективным ограничением на предыдущих уровнях». «Этот закон, предложенный российским кибернетиком и философом Е.Седовым, развивает и уточняет известный кибернетический закон Эшби о необходимом разнообразии»[52]. Из данного положения следует очевидный вывод: поскольку в реальных системах (в собственном смысле этого слова) первичный материал однороден, следовательно, сложность и разнообразие воздействий регуляторов достигается лишь относительным повышением уровня его организации. Ещё А. А. Богданов неоднократно указывал, что системные центры в реальных системах оказываются более организованными, чем периферические элементы: закон Седова лишь фиксирует, что уровень организации системного центра с необходимость должен быть выше по отношению к периферическим элементам. Одной из тенденций развития систем является тенденция прямого понижения уровня организации периферических элементов, приводящая к непосредственному ограничению их разнообразия: «только при условии ограничения разнообразия нижележащего уровня можно формировать разнообразные функции и структуры находящихся на более высоких уровнях», т.о. «рост разнообразия на нижнем уровне [иерархии] разрушает верхний уровень организации». В структурном смысле закон означает, что «отсутствие ограничений… приводит к деструктурализации системы как целого», что приводит к общей диверсификации системы в контексте объемлющей её среды;

- «принцип моноцентризма» (А. А. Богданов), фиксирует, что устойчивая система «характеризуется одним центром, а если она сложная, цепная, то у неё есть один высший, общий центр». Полицентрические системы характеризуются дисфункцией процессов координации, дезорганизованностью, неустойчивостью и т. д. Подобного рода эффекты возникают при наложении одних координационных процессов (пульсов) на другие, чем обусловлена утрата целостности;

- «закон минимума» (А. А. Богданов), обобщающий принципы Либиха и Митчерлиха, фиксирует: «устойчивость целого зависит от наименьших относительных сопротивлений всех его частей во всякий момент». «Во всех тех случаях, когда есть хоть какие-нибудь реальные различия в устойчивости разных элементов системы по отношению к внешним воздействиям, общая устойчивость системы определяется наименьшей её частичной устойчивостью». Именуемое также «законом наименьших относительных сопротивлений», данное положение является фиксацией проявления принципа лимитирующего фактора: темпы восстановления устойчивости комплекса после нарушающего её воздействия определяются наименьшими частичными, а так как процессы локализуются в конкретных элементах, устойчивость систем и комплексов определены устойчивостью слабейшего её звена (элемента);

Информация о работе Особенности и закономерности развития современного естествознания