Автор работы: Пользователь скрыл имя, 16 Декабря 2013 в 16:49, реферат
Рассмотрим кинетическую энергию совокупности частиц. Если вдруг окажется, что все частицы движутся в одном и том же направлении с одинаковыми скоростями, то вся система, подобно теннисному мячу, будет находится в состоянии полета. Система ведет себя в этом случае аналогично одной массивной частице, и к ней применимы обычные законы динамики, такое движение называется движением центра масс.
1. Этимология понятия «хаос». Соотношение порядка и беспорядка в природе……3
1.1 Хаос как основа порядка …………………………………………………………….3
1.2 Естественные процессы ……………………………………………………………..3
1.3 Хаос и порядок……………………………………………………………………….5
1.4 Понятие структуры ...………………………………………………………………..5
2. Хаос и мифы…………………………………………………………………………...8
3.Хаос и его проявления…………………………………………………………………8
4. Причины хаоса………………………………………………………………………...13
5. Роль энтропии как меры хаоса……………………………………………………….14
Список использованной литературы…………………………………………………...16
Если движение состоит из наложения двух колебаний разных частот, то фазовая траектория навивается на тор в фазовом пространстве трех измерений. Это движение устойчиво, а две фазовые траектории, начинающиеся рядом, будут навиваться на тор, не уходя друг от друга. Ситуация соответствует устойчивому установившемуся движению, к которому сама стремится.
В случае хаотического движения фазовые траектории с близкими начальными параметрами быстро расходятся, а потом хаотически перемешиваются, так как они могут удаляться только до какого-то предела из-за ограниченности области изменений координат и импульсов. Поэтому фазовые траектории создают складки внутри фазового пространства и оказываются достаточно близко друг к другу. Так возникает область фазового пространства, заполненная хаотическими траекториями, называемая странным аттрактором. На рис 3 изображен такой аттрактор, полученный Э. Лоренцом на ЭВМ. Видно, что система (изображаемая точкой) совершает быстрые нерегулярные колебания в одной области фазового пространства, а затем случайно перескакивает в другую область, через некоторое время — обратно. Так динамический хаос обращается с фазовым пространством. При этом образование складок возможно только при размерностях больших трех (только в 3-ем измерении начинают складываться плоские траектории). От этих хаотичностей нельзя избавиться. Они внутренне присущи системам со странными аттракторами. Хаотические движения в фазовом пространстве порождают случайность, которая связана с появлением сложных траекторий в результате растяжения и складывания в фазовом пространстве.
Рис 3. Аттрактор Лоренца.
Важнейшим свойством странных аттракторов является фрактальность Фракталы — это объекты, проявляющие по мере увеличения все большее число деталей. Их начали активно исследовать с появлением мощных ЭВМ. Известно, что прямые и окружности — объекты элементарной геометрии — природе не свойственны. Структура вещества чаще принимает замысловато ветвящиеся формы, напоминающие обтрепанные края ткани. Примеров подобных структур много это и коллоиды, и отложения металла при электролизе, и клеточные популяции.
Идеи Брюссельской школы, существенно опирающиеся на работы Пригожина, образуют новую, всеобъемлющую теорию изменений.
В сильно упрощенном виде суть этой теории
сводится к следующему. Некоторые
части Вселенной действительно
могут действовать как
Кроме того, открытый характер подавляющего большинства систем во Вселенной наводит на мысль о том, что реальность отнюдь не является ареной, на которой господствует порядок, стабильность и равновесие: главенствующую роль в окружающем нас мире играют неустойчивость и неравновесность.
Если воспользоваться
Один из ключевых моментов в острых
дисскусиях, развернувшихся вокруг понятия
диссипативной структуры, связан с
тем, что Пригожин подчеркивает возможность
спонтанного возникновения поря
Обобщая, мы можем утверждать, что
в состояниях, далеких от равновесия,
очень слабые возмущения, или флуктуации,
могут усиливаться до гигантских
волн, разрушающих сложившуюся структ
Знаменитое второе начало (закон) термодинамики в формулировке немецкого физика Р. Клаузиуса звучит так: "Теплота не переходит самопроизвольно от холодного тела к более горячему".
Закон сохранения и превращения энергии (первое начало термодинамики), в принципе, не запрещает такого перехода, лишь бы количество энергии сохранялось в прежнем объеме. Но в реальности это никогда не происходит. Данную односторонность, однонаправленность перераспределения энергии в замкнутых системах и подчеркивает второе начало термодинамики.
Для отражения этого процесса в термодинамику было введено новое понятие - "энтропия". Под энтропией стали понижать меру беспорядка системы. Более точная формулировка второго начала термодинамики приняла такой вид: при самопроизвольных процессах в системах, имеющих постоянную энергию, энтропия всегда возрастает.
Физический смысл возрастания энтропии сводится к тому, что состоящая из некоторого множества частиц изолированная (с постоянной энергией) система стремится перейти в состояние с наименьшей упорядоченностью движения частиц. Это и есть наиболее простое состояние системы, или термодинамическое равновесие, при котором движение частиц хаотично. Максимальная энтропия означает полное термодинамическое равновесие, что эквивалентно хаосу.
Однако, исходя из теории изменений Пригожина, энтропия - не просто безостановочное соскальзывание системы к состоянию, лишенному какой бы то ни было организации. При определенных условиях энтропия становится прародительницей порядка.