Рождение, жизнь и смерть звезд

Автор работы: Пользователь скрыл имя, 04 Января 2011 в 18:30, контрольная работа

Краткое описание

На протяжении веков человечество стремится познать и объяснить все тайны и загадки окружающего мира. Как маленький ребёнок оно задаёт бесконечное количество раз вопрос: «А почему?». На одни вопросы человечеству дают ответы учёные (теоретики и практики), на другие – писатели фантасты, на третьи – сама природа. Далёкие и манящие звёзды давно находятся под пристальным изучением многих поколений людей. И конечно такие изобретения как: радиотелескопы миллиметрового диапазона и инфракрасные телескопы - позволили значительно расширить знания о зарождении и формировании звёзд.

Вложенные файлы: 1 файл

курсовик.doc

— 125.00 Кб (Скачать файл)

   Таким образом, с точки зрения современной  теории звездной эволюции образование  планетарных туманностей и их ядер есть закономерный процесс эволюции красных гигантов.

   Является  ли такой путь образования белых  карликов единственно возможным? Можно  только утверждать, что такой путь (через образование планетарных  туманностей) является весьма распространенным. Вряд ли, однако, он привел к образованию всех белых карликов.  

      Для этих необычных звезд, однако, существует специфическая зависимость «масса — радиус». Подобно тому, как сделанные из одного какого-либо металла шары равной массы должны иметь равные диаметры, размеры белых карликов с одинаковой массой также должны быть одинаковы. Это утверждение, очевидно, несправедливо для других звезд: звезды-гиганты и звезды главной последовательности могут иметь одинаковые массы, но существенно разные диаметры. Такое отличие белых карликов от остальных звезд объясняется тем, что температура почти не играет никакой роли в их гидростатическом равновесии, которое и определяет структуру. Вещество недр белых карликов отличается высокой прозрачностью и теплопроводностью.

   Белый карлик— это очень плотный газовый шар, электроны которого вырождены, окруженный сравнительно тонкой оболочкой, из «обычного» газа.

Нейтронная  звезда.

  1.    Если первоначальная масса ядра звезды превосходила 1,2M , но была меньше 2,4M , то после исчерпания существенной части ядерного горючего произойдет катастрофа. Внутренние слои звезды под влиянием силы тяготения, которой уже не может противодействовать газовое давление, обрушатся к центру звезды. Почти одновременно с этим наружные слои звезды в результате взрыва будут выброшены с огромной скоростью порядка 10000 км/с. Это явление будет наблюдаться как вспышка сверхновой. Падая со скоростью свободного падения, за какие-нибудь несколько секунд внутренние слои звезды сожмутся в сотню тысяч раз. При этом объем звезды уменьшится в 1015 раз, ее средняя плотность во столько же раз увеличится и превзойдет ядерную, а линейные размеры станут всего лишь порядка 10 км. Достигнув таких размеров и такой плотности, звезда застабилизируется и ее дальнейшее сжатие практически прекратится. Опять образуется равновесная конфигурация, но уже в условиях, качественно отличных от равновесия «обычной» звезды. Физические свойства такого сверхплотного вещества, давление которого уравновешивает силу гравитационного притяжения «сколлапсировавшей» звезды, весьма необычны. Во многом они сходны со свойствами вещества атомного ядра, представляющего собой смесь сильно взаимодействующих протонов и нейтронов. Такой объект подобен макроскопической «ядерной капле». Отличие этого агрегата от ядерного вещества состоит главным образом в том, что для сколлапсировавшей звезды по причине ее большой массы фундаментальное значение имеет гравитационное взаимодействие ее элементов, между тем как для ничтожных по своей массе ядер гравитация несущественна. Вполне понятно, почему звезду, образовавшуюся в результате гравитационного коллапса, теоретики уже давно, еще в тридцатых годах нашего столетия, назвали «нейтронной».

       Итак, взрывы сверхновых звезд сопровождаются образованием нейтронных звезд — качественно нового типа космических объектов, существование которых было давно предсказано теоретиками.

      «Часовой механизм» пульсаров объясняется осевым вращением нейтронных звезд. Другими словами, пульсары — это очень быстро вращающиеся нейтронные звезды.

   Подавляющее большинство пульсаров не окружено радиотуманностями. За миллионы лет эти туманности благодаря своему расширению полностью «растворятся» в окружающей межзвездной среде и перестанут быть наблюдаемыми. Радиотуманности, образующиеся на месте вспышек сверхновых звезд, представляют собой сравнительно эфемерное образование, между тем как нейтронные звезды оказываются весьма долговечными объектами. Только самые молодые нейтронные звезды окружены еще не успевшими рассеяться туманностями — источниками радиоизлучения. Различие в возрасте пульсаров и остатков вспышек сверхновых звезд, без сомнения, является основной причиной отсутствия вокруг подавляющего большинства пульсаров радиотуманностей. Полное количество всех пульсаров в Галактике должно быть порядка нескольких сотен тысяч. Только малая часть их наблюдаема (всего сейчас известно около 350 пульсаров). Так как средний возраст пульсаров близок к 2 106 лет, то частота появления новых пульсаров приблизительно равна одному объекту за несколько десятков лет — величина, близкая к частоте вспышек сверхновых.

   Чёрная  дыра.

  1. В случае, если масса ядра сколлапсировавшей звезды превосходит некоторый критический предел (около 2,5—3 M ), ее неограниченное сжатие под давлением силы гравитации уже ничем нельзя остановить. При этом нейтронная звезда как стабильное образование возникнуть не может. Ничем не компенсируемая сила гравитации будет сколь угодно сильно сжимать вещество коллапсирующей звезды, размеры которой будут становиться сколь угодно малыми. Звезда будет сжиматься в точку, но... Но здесь выступают на первый план парадоксальные закономерности общей теории относительности. Из-за огромного значения гравитационного потенциала эффекты общей теории относительности, которые в «нормальных» космических условиях совершенно ничтожны по величине, здесь становятся решающими. Связанная с такой ситуацией увлекательнейшая проблема черных дыр, являющаяся сейчас едва ли не центральной проблемой астрономии.

     Таким образом, для внешнего наблюдателя за очень короткое время 10-5 с коллапсирующая звезда как бы «пропадает». Такой объект получил весьма образное название «черной дыры». Никакое излучение — фотонное, нейтринное или корпускулярное,— из такой «дыры» уже не выходит. Единственное, что остается от этой звезды для внешнего мира,— это ее гравитационное поле, определяемое массой. Если, например, в двойной системе одна из компонент сколлапсирует, то это ничуть не отразится на движении второй компоненты.

   В последние годы теоретики довольно много занимались абстрактными математическими  свойствами черных дыр. Например, исследовались  возможности столкновения черных дыр  с обыкновенными звездами и между  собой. Оказывается, что после таких столкновений могут образовываться новые черные дыры, причем в течение короткого времени rg/c 10-5 с они будут находиться в сильно возмущенном состоянии, характеризующимся мощным излучением гравитационных волн, после чего они опять «успокаиваются». Самым общим образом было доказано несколько важных математических теорем о черных дырах. Сформулируем две из них: а) образовавшаяся каким-либо способом черная дыра никогда не может быть разрушена; б) одна черная дыра никогда не может разделиться на две черные дыры, хотя обратный процесс возможен.

   В процессе оседания газа в черную дыру температура внутренних частей диска  станет очень высокой. Такой диск может быть мощным источником рентгеновского излучения. Мощность и спектр излучения в первом приближении такие же, как и от нейтронных звезд — рентгеновских пульсаров. Разумеется, рентгеновское излучение при аккреции газа на черную дыру не может носить характер строго периодических импульсов. Но ведь далеко не все рентгеновские пульсары — нейтронные звезда — излучают «секундные» импульсы. Этому может, например, помешать сильное рассеяние или «неблагоприятная» (по отношению к земному наблюдателю) ориентация оси вращения нейтронной звезды. В то же время рентгеновский источник — горячий компактный диск, вращающийся вокруг нейтронной звезды, может из-за своего орбитального движения вокруг «оптической компоненты» периодически затмеваться точно так же, как и рентгеновский пульсар.

   Таким образом, в принципе, среди рентгеновских источников — компонент тесных двойных систем могут быть и черные дыры.

   5.Заключение и выводы.

   Сделаем выводы – после начала термоядерной реакции звезда проходит следующие этапы развития:

    1.    Нормальные, или жёлтые звёзды, находятся на этапе выгорания водорода. По мере выгорания водорода формируется гелиевое ядро, которое отделено от водородной оболочки зоной конвенции и излучения;
    2.    Сверхгигант, или красный гигант. Гелиевое ядро звезды сжимается, а размеры звезды значительно увеличиваются за счёт того, что водородная оболочка удаляется от ядра. Масса красного гиганта начинает сокращаться не только из-за горения водорода, но и из-за потерь вещества на внешней оболочке звезды;
 
    1.    Белый  карлик. Внешний слой истощается, рассеивается в космическом пространстве, и от звезды остаётся только горячее гелиевое ядро. Гравитационное сжатие ядра продолжается. Первоначально поверхность белого карлика имеет очень большую температуру (до десятков тысяч градусов), но затем быстро остывает. Диаметр белого карлика составляет лишь 5-10 тыс. км, т.е. сравним с диаметром Земли;
 
 
    1.    Нейронная  звезда. Продолжающееся сжатие ядра  и ускорение вращения вокруг  своей оси приводят к уплотнению  и схлопыванию атомов. Электроны соединяются с протонами, и образуются нейтроны. Белый карлик превращается в нейтронную звезду. Размер такой звезды составляет лишь несколько километров (диаметр г. Москвы), скорость вращения вокруг оси – несколько сотен оборотов в минуту. Колоссальная плотность нейтронной звезды приводит к такому искривлению пространства вокруг неё, что вещество звезды стремится к сжатию в точку;
 
    1.    Чёрная  дыра. Концентрация массы в пространстве  достигает такой степени, что  в одной чайной ложке оказалось  бы 100 млн метрических тонн вещества. Все объекты и излучения, находящиеся в зоне гравитационного действия черной дыры, стремятся к ней. Размер чёрной дыры составляет 2-3 км;
    2.    Конечная стадия существования чёрных дыр – взрыв и рассеивание вещества. На этой стадии существования звезды можно считать окончательно завершённым.

       Скорость прохождения звездой  перечисленных этапов существования  зависит от её размеров. Большие  звёзды проходят все перечисленные  этапы быстрее. 

       За период немногим более двух  столетий представление о звёздах изменилось кардинально. Из непостижимо далёких и равнодушных светящих точек на небе они превратились в предмет всестороннего физического исследования.

    Астрономы не в состоянии проследит жизнь  одной звезды от начала и до конца. Даже самые короткоживущие звёзды существуют миллионы лет – дольше жизни не только одного человека, но и всего человечества. Учёные могут наблюдать много звёзд, находящихся на самых разных стадиях своего развития, - только что родившиеся и умирающие. Благодаря развитию наблюдательных технологий астрономы получили возможность исследовать не только видимое, но и не видимое глазу излучение звёзд.  По многочисленным звездным портретам они стараются восстановить эволюционный путь каждой звезды и написать её биографию.

    Сейчас  уже многое известно об их строении и эволюции, хотя немало остаётся и непонятного. Ещё впереди то время, когда исполнится мечта создателя современной науки о звёздах Артура Эддингтона и люди, наконец, смогут понять такую великую вещь, как звезда. 

Информация о работе Рождение, жизнь и смерть звезд